

ICC-ES Evaluation Report

Reissued January 2019 Revised January 2020 This report is subject to renewal January 2021.

ESR-3814

www.icc-es.org | (800) 423-6587 | (562) 699-0543

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 500 V3 ADHESIVE ANCHORS AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2018, 2015, 2012 and 2009 *International Building Code*[®] (IBC)
- 2018, 2015, 2012 and 2009 International Residential Code[®] (IRC)
- 2013 Abu Dhabi International Building Code (ADIBC)†

The ADIBC is based on the 2009 IBC. 2009 IBC code sections referenced in this report are the same sections in ADIBC.

For evaluation for compliance with the *National Building Code of Canada*[®] (NBCC), see listing report <u>ELC-3814</u>.

For evaluation for compliance with codes adopted by Los Angeles Department of Building and Safety (LADBS), see <u>ESR-3814 LABC and LARC Supplement</u>.

Property evaluated:

Structural

2.0 USES

The Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are used to resist static, wind and earthquake (Seismic Design Categories A through F) tension and shear loads in cracked and uncracked normal-weight concrete having a specified compressive strength, f'_c , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

The anchor system complies with anchors as described in Section 1901.3 of the 2018 and 2015 IBC, Section 1909 of the 2012 IBC and is an alternative to cast-in-place anchors described in Section 1908 of the 2012 IBC, and Sections 1911 and 1912 of the 2009 IBC. The anchor A Subsidiary of the International Code Council®

systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

The post-installed reinforcing bar system is an alternative to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

3.0 DESCRIPTION

3.1 General:

The Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are comprised of the following components:

- Hilti HIT-RE 500 V3 adhesive packaged in foil packs
- · Adhesive mixing and dispensing equipment
- Equipment for hole cleaning and adhesive injection

The Hilti HIT-RE 500 V3 Adhesive Anchoring System may be used with continuously threaded rod, Hilti HIS-(R)N internally threaded inserts or deformed steel reinforcing bars as depicted in Figure 4. The Hilti HIT-RE 500 V3 Post-Installed Reinforcing Bar System may only be used with deformed steel reinforcing bars as depicted in Figures 2 and 3. The primary components of the Hilti Adhesive Anchoring and Post-Installed Reinforcing Bar Systems, including the Hilti HIT-RE 500 V3 Adhesive, HIT-RE-M static mixing nozzle and steel anchoring elements, are shown in Figure 6 of this report.

The manufacturer's printed Installation instructions (MPII), as included with each adhesive unit package, are consolidated as Figure 9A and 9B.

3.2 Materials:

3.2.1 Hilti HIT-RE 500 V3 Adhesive: Hilti HIT-RE 500 V3 Adhesive is an injectable, two-component epoxy adhesive. The two components are separated by means of a dual-cylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold. Hilti HIT-RE 500 V3 is available in 11.1-ounce (330 ml), 16.9-ounce (500 ml), and 47.3-ounce (1400 ml) foil packs. The manifold attached to each foil pack is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened foil pack stored in a dry, dark environment and in accordance with Figure 9A.

3.2.2 Hole Cleaning Equipment:

3.2.2.1 Standard Equipment: Standard hole cleaning equipment, comprised of steel wire brushes and air nozzles, is described in Figure 9A of this report.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report. **3.2.2.2 Hilti Safe-SetTM System:** For the elements described in Sections 3.2.5.1 through 3.2.5.3 and Section 3.2.6, the Hilti TE-CD or TE-YD hollow carbide drill bit with a carbide drilling head conforming to ANSI B212.15 must be used. When used in conjunction with a Hilti vacuum with a minimum value for the maximum volumetric flow rate of 129 CFM (61 ℓ /s), the Hilti TE-CD or TE-YD drill bit will remove the drilling dust, automatically cleaning the hole. Available sizes for Hilti TE-CD or TE-YD drill bit are shown in Figure 9A.

3.2.3 Hole Preparation Equipment:

3.2.3.1 Hilti Safe-Set™ System: TE-YRT Roughening Tool: For the elements described in Sections 3.2.5.1 through 3.2.5.3 and Tables 9, 12, 17, 20, and 29, the Hilti TE-YRT roughening tool with a carbide roughening head is used for hole preparation in conjunction with holes core drilled with a diamond core bit as illustrated in Figure 5.

3.2.4 Dispensers: Hilti HIT-RE 500 V3 must be dispensed with manual, electric, or pneumatic dispensers provided by Hilti.

3.2.5 Anchor Elements:

3.2.5.1 Threaded Steel Rods: Threaded steel rods must be clean, continuously threaded rods (all-thread) in diameters as described in Tables 6 and 14 and Figure 4 of this report. Steel design information for common grades of threaded rods is provided in Table 2. Carbon steel threaded rods must be furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633 SC 1 or must be hot-dipped galvanized complying with ASTM A153, Class C or D. Stainless steel threaded rods must comply with ASTM F593 or ISO 3506 A4. Threaded steel rods must be straight and free of indentations or other defects along their length. The ends may be stamped with identifying marks and the embedded end may be blunt cut or cut on the bias to a chisel point.

3.2.5.2 Steel Reinforcing Bars for use in Post-Installed Anchor Applications: Steel reinforcing bars are deformed bars as described in Table 3 of this report. Tables 6, 14, and 22 and Figure 4 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil, and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in ACI 318-14 26.6.3.1(b) or ACI 318-11 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.2.5.3 Hilti HIS-N and HIS-RN Inserts: Hilti HIS-N and HIS-RN inserts have a profile on the external surface and are internally threaded. Mechanical properties for Hilti HIS-N and HIS-RN inserts are provided in Table 4. The inserts are available in diameters and lengths as shown in Table 26 and Figure 4. Hilti HIS-N inserts are produced from carbon steel and furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633 SC 1. The stainless steel Hilti HIS-RN inserts are fabricated from X5CrNiMo17122 K700 steel conforming to DIN 17440. Specifications for common bolt types that may be used in conjunction with Hilti HIS-N and HIS-RN inserts are provided in Table 5. Bolt grade and material type (carbon, stainless) must be matched to the insert. Strength reduction factors, ϕ , corresponding to brittle steel elements must be used for Hilti HIS-N and HIS-RN inserts.

3.2.5.4 Ductility: In accordance with ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, in order for a steel element to be considered ductile, the tested elongation must be at

3.2.6 Steel Reinforcing Bars for Use in Post-Installed Reinforcing Bar Connections: Steel reinforcing bars used in post-installed reinforcing bar connections are deformed bars (rebar) as depicted in Figures 2 and 3. Tables 31, 32, 33, and Figure 4 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil, and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in ACI 318-14 26.6.3.1(b) or ACI 318-11 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.3 Concrete:

Normal-weight concrete must comply with Sections 1903 and 1905 of the IBC, as applicable. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum 24 MPa required under ADIBC Appendix L, Section 5.1.1].

4.0 DESIGN AND INSTALLATION

4.1 Strength Design of Post-Installed Anchors:

Refer to Table 1 for the design parameters for specific installed elements, and refer to Figure 5 and Section 4.1.4 for a flowchart to determine the applicable design bond strength or pullout strength.

4.1.1 General: The design strength of anchors complying with the 2018 and 2015 IBC, as well as Section R301.1.3 of the 2018 and 2015 IRC must be determined in accordance with ACI 318-14 Chapter 17 and this report.

The design strength of anchors under the 2012 and 2009 IBC, as well as the 2012 and 2009 IRC must be determined in accordance with ACI 318-11 and this report.

A design example according to the 2018 and 2015 IBC based on ACI 318-14 is given in Figure 7 of this report.

Design parameters are based on ACI 318-14 for use with the 2018 and 2015 IBC, and ACI 318-11 for use with the 2012 and 2009 IBC unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report.

The strength design of anchors must comply with ACI 318-14 17.3.1 or ACI 318-11 D.4.1 as applicable, except as required in ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

Design parameters are provided in Table 6A through Table 30. Strength reduction factors, ϕ , as given in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC or ACI 318-14 5.3 or ACI 318-11 9.2, as applicable. Strength reduction factors, ϕ , as given in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

4.1.2 Static Steel Strength in Tension: The nominal static steel strength of a single anchor in tension, N_{sa} , in accordance with ACI 318-14 17.4.1.2 or ACI 318-11 Section D.5.1.2, as applicable, and the associated strength reduction factors, ϕ , in accordance with ACI 318-14 17.3.3 or ACI 318-11 Section D.4.3, as applicable, are provided in the tables outlined in Table 1 for the anchor element types included in this report.

4.1.3 Static Concrete Breakout Strength in Tension: The nominal concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable using the values of $k_{c,cr}$, and $k_{c,uncr}$, as described in this report. Where analysis indicates no cracking in accordance with ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N} = 1.0$. See Table 1. For anchors in lightweight concrete, see ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-14 17.4.5 or ACI 318-11 D.5.5, as applicable. Bond strength values are a function of the concrete compressive strength, whether the concrete is cracked or uncracked, the concrete temperature range, the drilling method, and the installation conditions (dry or water-saturated, etc.). The resulting characteristic bond strength shall be multiplied by the associated strength reduction factor ϕ_{nn} as follows:

DRILLING METHOD	CONCRETE TYPE	PERMISSIBLE INSTALLATION CONDITIONS	BOND STRENGTH	ASSOCIATED STRENGTH REDUCTION FACTOR
		Dry	$ au_{k,uncr}$ or $ au_{k,cr}$	ϕ_{d}
Hammer-drill	Cracked and	Water-saturated	$\mathcal{T}_{k,uncr}$ or $\mathcal{T}_{k,cr}$	ϕ_{ws}
	Uncracked	Water-filled hole $\mathcal{T}_{k,uncr}$ or $\mathcal{T}_{k,cr}$		ϕ_{wf}
		Underwater application	$\mathcal{T}_{k,uncr}$ or $\mathcal{T}_{k,cr}$	ϕ_{uw}
Core Drilled with Roughening Tool	Cracked and	Dry	$\mathcal{T}_{k,uncr}$ or $\mathcal{T}_{k,cr}$	<i></i> ød
or Hilti TE- CD or TE- YD Hollow Drill Bit	Uncracked	Water-saturated	$\mathcal{T}_{k,uncr}$ or $\mathcal{T}_{k,cr}$	ϕ_{ws}
Core Drilled	Uncracked	Dry	$ au_{k,uncr}$	$\phi_{ m d}$
Core Dillied	Uncrackeu	Water-saturated	$ au_{k,uncr}$	ϕ_{ws}

Figure 5 of this report presents a bond strength design selection flowchart. Strength reduction factors for determination of the bond strength are outlined in Table 1 of this report. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the bond strength tables.

4.1.5 Static Steel Strength in Shear: The nominal static strength of a single anchor in shear as governed by the steel, V_{sa} , in accordance with ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, and strength reduction factors, ϕ , in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are given in the tables outlined in Table 1 for the anchor element types included in this report.

4.1.6 Static Concrete Breakout Strength in Shear: The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, based on information given in the tables outlined in Table 1. The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, using the values of *d* given in the tables as outlined in Table 1 for the corresponding anchor steel in lieu of d_a (2018, 2015, 2012 and 2009 IBC). In addition, h_{ef} must be substituted for ℓ_e . In no case must ℓ_e exceed 8*d*. The value of f_c must be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable.

4.1.7 Static Concrete Pryout Strength in Shear: The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , must be calculated in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable.

4.1.8 Interaction of Tensile and Shear Forces: For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 17.6 or ACI 318-11 D.7, as applicable.

4.1.9 Minimum Member Thickness, *h_{min}*, **Anchor Spacing,** *s_{min}* and **Edge Distance,** *c_{min}*: In lieu of ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, as applicable, values of *s_{min}* and *c_{min}* described in this report must be observed for anchor design and installation. Likewise, in lieu of ACI 318-14 17.7.5 or ACI 318-11 D.8.5, as applicable, the minimum member thicknesses, *h_{min}*, described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-14 17.7.4 or ACI 318-11 D.8.4, as applicable, applies.

For edge distances c_{ai} and anchor spacing s_{ai} , the maximum torque T_{max} shall comply with the following requirements:

REDUCED MAXIMUM INSTALLATION TORQUE $T_{max,red}$ FOR EDGE DISTANCES $c_{ai} < (5 \times d_a)$					
EDGE DISTANCE, Cai					
1.75 in. (45 mm) ≤ <i>c_{ai}</i>	5 x <i>d</i> _a ≤ s _{ai} < 16 in.	0.3 x <i>T_{max}</i>			
< 5 x <i>d</i> a	<i>s_{ai}</i> ≥ 16 in. (406 mm)	0.5 x T _{max}			

4.1.10 Critical Edge Distance c_{ac} : In lieu of ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable, c_{ac} must be determined as follows:

$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k,uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$
 Eq. (4-1)

where $\left[\frac{h}{h_{ef}}\right]$ need not be taken as larger than 2.4: and

 $\tau_{k,uncr}$ is the characteristic bond strength in uncracked concrete stated in the tables of this report, whereby $\tau_{k,uncr}$ need not be taken as greater than:

$$\tau_{k,uncr} = \frac{k_{uncr} \sqrt{h_{ef} \cdot f_c'}}{\pi \cdot d_a}$$

4.1.11 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, the design must be performed according to ACI 318-14 17.2.3 or ACI 318-11 Section D.3.3, as applicable. Modifications to ACI 318-14 17.2.3 shall be applied under Section 1905.1.8 of the 2018 and 2015 IBC. For the 2012 IBC, Section 1905.1.9 shall be omitted. Modifications to ACI 318-08 D.3.3 must be applied under Section 1908.1.9 of the 2009 IBC.

The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in the tables summarized in Table 1 for the anchor element types included in this report. For tension, the nominal pullout strength $N_{p,cr}$ or bond strength τ_{cr} must be adjusted by $\alpha_{N,seis}$. See Tables 8, 9, 11, 12, 16, 17, 19, 20, 24, 28 and 29.

Modify ACI 318-11 Sections D.3.3.4.2, D.3.3.4.3(d) and D.3.3.5.2 to read as follows:

ACI 318-11 D.3.3.4.2 - Where the tensile component of the strength-level earthquake force applied to anchors exceeds 20 percent of the total factored anchor tensile force associated with the same load combination, anchors and their attachments shall be designed in accordance with ACI 318-11 D.3.3.4.3. The anchor design tensile strength shall be determined in accordance with ACI 318-11 D.3.3.4.4

Exception:

1. Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy ACI 318-11 D.3.3.4.3(d).

ACI 318-11 D.3.3.4.3(d) – The anchor or group of anchors shall be designed for the maximum tension obtained from design load combinations that include *E*, with *E* increased by Ω_0 . The anchor design tensile strength shall be calculated from ACI 318-11 D.3.3.4.4.

ACI 318-11 D.3.3.5.2 – Where the shear component of the strength-level earthquake force applied to anchors exceeds 20 percent of the total factored anchor shear force associated with the same load combination, anchors and their attachments shall be designed in accordance with ACI 318-11 D.3.3.5.3. The anchor design shear strength for resisting earthquake forces shall be determined in accordance with ACI 318-11 D.6.

Exceptions:

1. For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:

1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain.

1.2. The maximum anchor nominal diameter is $\frac{5}{8}$ inch (16 mm).

1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).

1.4. Anchor bolts are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.

1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.

1.6. The sill plate is 2-inch or 3-inch nominal thickness.

2. For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3, need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:

2.1. The maximum anchor nominal diameter is $\frac{5}{8}$ inch (16 mm).

2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).

2.3. Anchors are located a minimum of $1^{3}/4$ inches (45 mm) from the edge of the concrete parallel to the length of the track.

2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.

2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete shall be permitted to be determined in accordance with AISI S100 Section E3.3.1.

3. In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy ACI 318-11 D.3.3.5.3(a) through (c) when the design strength of the anchors is determined in accordance with ACI 318-11 D.6.2.1(c).

4.2 Strength Design of Post-Installed Reinforcing Bars:

4.2.1 General: The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318 rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of post-installed reinforcing bars are illustrated in Figures 2 and 3 of this report. A design example in accordance with the 2018 and 2015 IBC based on ACI 318-14 is given in Figure 8 of this report.

4.2.2 Determination of bar development length I_{dc} . Values of I_{d} must be determined in accordance with the ACI 318 development and splice length requirements for straight cast-in place reinforcing bars.

Exceptions:

1. For uncoated and zinc-coated (galvanized) post-installed reinforcing bars, the factor Ψ_{e} shall be taken as 1.0. For all other cases, the requirements in ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (b) shall apply.

2. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.

4.2.3 Minimum Member Thickness, h_{min} , Minimum Concrete Cover, $c_{c,min}$, Minimum Concrete Edge Distance, $c_{b,min}$, Minimum Spacing, $s_{b,min}$: For post-installed reinforcing bars, there is no limit on the minimum member thickness. In general, all requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318 shall be maintained.

For post-installed reinforcing bars installed at embedment depths, h_{ef} , larger than 20d ($h_{ef} > 20d$), the minimum concrete cover shall be as follows:

REBAR SIZE	MINIMUM CONCRETE COVER, c _{c,min}
$d_b \le No. \ 6 \ (16 \ mm)$	1 ³ / ₁₆ in. (30mm)
No. $6 < d_b \le No. 10$	1 ⁹ / ₁₆ in.
$(16mm < d_b \le 32mm)$	(40mm)

The following requirements apply for minimum concrete edge and spacing for $h_{ef} > 20d$:

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

 $C_{b,min} = d_0/2 + C_{c,min}$

Required minimum center-to-center spacing between post-installed bars:

 $S_{b,min} = d_0 + C_{c,min}$

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $s_{b,min} = d_b/2$ (existing reinforcing) + $d_0/2$ + $c_{c,min}$

All other requirements applicable to straight cast-in place bars designed in accordance with ACI 318 shall be maintained.

4.2.4 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight post-installed reinforcing bars must take into account the provisions of ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

4.3 Installation:

Installation parameters are illustrated in Figures 1 and 4. Installation must be in accordance with ACI 318-14 17.8.1 and 17.8.2 or ACI 318-11 D.9.1 and D.9.2, as applicable. Anchor and post-installed reinforcing bar locations must comply with this report and the plans and specifications approved by the code official. Installation of the Hilti HIT-RE 500 V3 Adhesive Anchor and Post-Installed Reinforcing Bar Systems must conform to the manufacturer's printed installation instructions (MPII) included in each unit package consolidated as Figures 9A and 9B of this report. The MPII contains additional requirements for combinations of drill hole depth, diameter, drill bit type, hole preparation, and dispensing tools.

The initial cure time, $t_{cure,ini}$, as noted in Figure 9A of this report, is intended for rebar applications only and is the time where rebar and concrete formwork preparation may continue. Between the initial cure time and the full cure time, $t_{cure,final}$, the adhesive has a limited load bearing capacity. Do not apply a torque or load on the rebar during this time

4.4 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2018, 2015 and 2012 IBC, or Section 1704.15 and Table 1704.4 of the 2009 IBC, as applicable, and this report. The special inspector must be on the jobsite initially during anchor or post-installed reinforcing bar installation to verify anchor or post-installed reinforcing bar type and dimensions, concrete type, concrete strength, adhesive identification compressive and expiration date, hole dimensions, hole cleaning procedures, spacing, edge distances, concrete thickness, anchor or post-installed reinforcing bar embedment, tightening torque and adherence to the manufacturer's printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor or post-installed reinforcing bar by construction personnel on site. Subsequent installations of the same anchor or post-installed reinforcing bar type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor or post-installed reinforcing bar product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors or post-installed reinforcing bar installed in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed in accordance with ACI 318-14 17.8.2.4, 26.7.1(h), and 26.13.3.2(c) or ACI 318-11 D.9.2.4, as applicable.

Under the IBC, additional requirements as set forth in Sections 1705, 1706, and 1707 must be observed, where applicable.

5.0 CONDITIONS OF USE

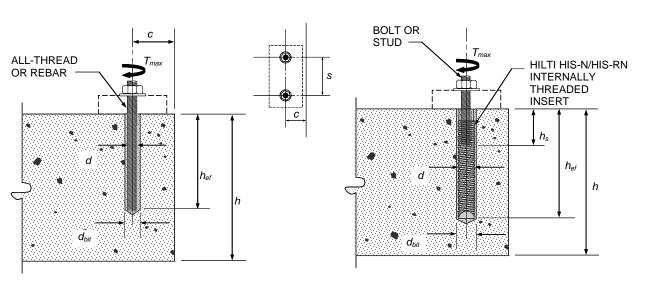
The Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System described in this report complies with, or is a suitable alternative to what is specified in, the codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** Hilti HIT-RE 500 V3 Adhesive anchors and post-installed reinforcing bars must be installed in accordance with the manufacturer's printed installation instructions (MPII) as included in the adhesive packaging and consolidated as Figures 9A and 9B of this report.
- **5.2** The anchors and post-installed reinforcing bars must be installed in cracked and uncracked normal-weight concrete having a specified compressive strength $f_c = 2,500$ psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].
- **5.3** The values of f_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa).
- **5.4** The concrete shall have attained its minimum design strength prior to installation of the Hilti HIT-RE 500 V3 adhesive anchors or post-installed reinforcing bars.
- **5.5** Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes drilled using carbide-tipped drill bits manufactured with the range of maximum and minimum drill-tip dimensions specified in ANSI B212.15-1994, or diamond core drill bits, as detailed in Figure 9A. Use of the Hilti TE-YRT Roughening Tool in conjunction with diamond core bits must be as detailed in Figure 9B.
- **5.6** Loads applied to the anchors must be adjusted in accordance with Section 1605.2 of the IBC for strength design.
- **5.7** Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars are recognized for use to resist short- and long-term loads, including wind and earthquake, subject to the conditions of this report.
- **5.8** In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report, and post-installed reinforcing bars must comply with section 4.2.4 of this report.

- **5.9** Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report.
- **5.10** Anchor strength design values must be established in accordance with Section 4.1 of this report.
- **5.11** Post-installed reinforcing bar development and splice length is established in accordance with Section 4.2 of this report.
- **5.12** Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values noted in this report.
- **5.13** Post-installed reinforcing bar spacing, minimum member thickness, and cover distance must be in accordance with the provisions of ACI 318 for cast-in place bars and section 4.2.3 of this report.
- **5.14** Prior to anchor installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- **5.15** Anchors and post-installed reinforcing bars are not permitted to support fire-resistive construction. Where not otherwise prohibited by the code, Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars are permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors and post-installed reinforcing bars are used to resist wind or seismic forces only.
 - Anchors and post-installed reinforcing bars that support gravity load-bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - Anchors and post-installed reinforcing bars are used to support nonstructural elements.
- **5.16** Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors and post-installed reinforcing bars subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- **5.17** Use of zinc-plated carbon steel threaded rods or steel reinforcing bars is limited to dry, interior locations.
- **5.18** Use of hot-dipped galvanized carbon steel and stainless steel rods is permitted for exterior exposure or damp environments.
- **5.19** Steel anchoring materials in contact with preservative-treated and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153. Periodic special inspection must be provided in accordance with Section 4.4 of this report. Continuous special inspection for anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.4 of this report.
- 5.20 Installation of anchors and post-installed reinforcing bars in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by

personnel certified by an applicable certification program in accordance with ACI 318-14 17.8.2.2 or 17.8.2.3, or ACI 318-11 D.9.2.2 or D.9.2.3, as applicable.

- 5.21 Hilti HIT-RE 500 V3 adhesive anchors and post-installed reinforcing bars may be used to resist tension and shear forces in floor, wall, and overhead installations only if installation is into concrete with a temperature between 23°F and 104°F (-5°C and 40°C) for threaded rods, rebar, and Hilti HIS-(R)N inserts. Overhead installations for hole diameters larger than $\frac{7}{16}$ -inch or 10mm require the use of piston plugs (HIT-SZ, -IP) during injection to the back of the hole. 7/16-inch or 10mm diameter holes may be injected directly to the back of the hole with the use of extension tubing on the end of the nozzle. The anchor or post-installed reinforcing bars must be supported until fully cured (i.e., with Hilti HIT-OHW wedges, or other suitable means). Where temporary restraint devices are used, their use shall not result in imparement of the anchor shear resistance. Installations in concrete temperatures below 41°F (5°C) require the adhesive to be conditioned to a minimum temperature of 41°F (5°C).
- **5.22** Anchors and post-installed reinforcing bars shall not be used for applications where the concrete temperature can rise from 40°F or less to 80°F or higher within a 12-hour period. Such applications may include but are not limited to anchorage of building façade systems and other applications subject to direct sun exposure.
- **5.23** Hilti HIT-RE 500 V3 adhesives are manufactured by Hilti GmbH, Kaufering, Germany, under a quality-control program with inspections by ICC-ES.
- **5.24** Hilti HIS-N and HIS-RN inserts are manufactured by Hilti (China) Ltd., Guangdong, China, under a quality-control program with inspections by ICC-ES.


6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete (AC308), dated October 2017 (Editorially revised March 2018), which incorporates requirements in ACI 355.4-11, including but not limited to tests under freeze/thaw conditions (Table 3.2, test series 6), and Table 3.8 for evaluating post-installed reinforcing bars.

7.0 IDENTIFICATION

- 7.1 Hilti HIT-RE 500 V3 adhesive is identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, product name, lot number, expiration date, and evaluation report number (ESR-3814).
- **7.2** Hilti HIS-N and HIS-RN inserts are identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, anchor name and size, and evaluation report number (ESR-3814). Threaded rods, nuts, washers, bolts, cap screws, and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications.
- **7.3** The report holder's contact information is the following:

HILTI, INC. 7250 DALLAS PARKWAY, SUITE 1000 PLANO, TEXAS 75024 (800) 879-8000 www.us.hilti.com HiltiTechEng@us.hilti.com

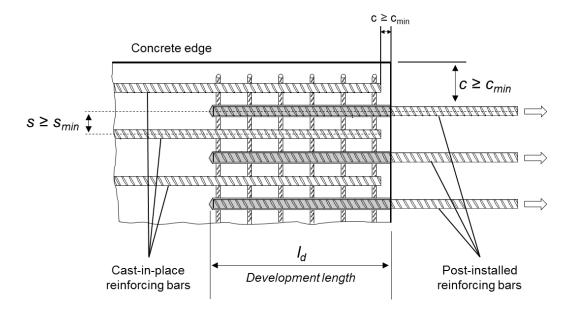


FIGURE 2—INSTALLATION PARAMETERS FOR POST-INSTALLED REINFORCING BARS

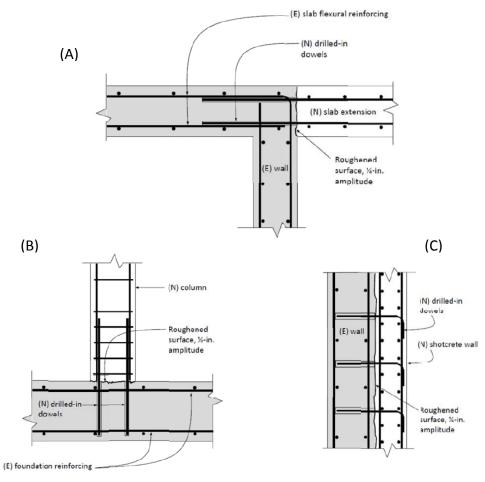
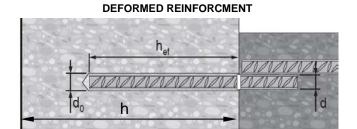
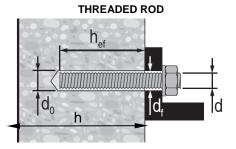



FIGURE 3—(A) TENSION LAP SPLICE WITH EXISTING FLEXURAL REINFORCEMENT; (B) TENSION DEVELOPMENT OF COLUMN DOWELS; (C) DEVELOPMENT OF SHEAR DOWELS FOR NEW ONLAY SHEAR WALL

EU Rebar

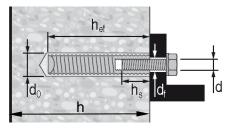

Ø d [mm]	Ø d ₀ [mm]	h _{ef} [mm]
8	12	60480
10	14	60600
12	16	70720
14	18	75840
16	20	80960
18	22	851080
20	25	901200
22	28	951320
24	32	961440
25	32	1001500
26	35	1041560
28	35	1121680
30	37	1201800
32	40	1281920

US Rebar

(ZZZZZZZ	Ø d _o	h _{ef}
d	[inch]	[inch]
#3	1/2	2 3/822 1/2
#4	5/8	2 ³ / ₄ 30
#5	3/4	3 1/837 1/2
#6	7/8	31/215
#0	1	1545
#7	1	31/2171/2
π,	1 1/8	17 1/252 1/2
#8	1 1/8	420
#0	1 ¹ /4	2060
#9	1 3/8	4 1/267 1/2
# 10	1 1/2	575
# 11	1 3/4	51/2821/2

CA Rebar

OA IICDUI		
	Ø d _o	h _{ef}
d	[inch]	[mm]
10 M	⁹ / ₁₆	70678
15 M	3/4	80960
20 M	1	901170
25 M	1 1/4 (32 mm)	1011512
30 M	1 1/2	1201794


HAS / HIT-V

Ø d [inch]	Ø d₀ [inch]	h _{et} [inch]	Ø d _t [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	7/16	23/871/2	7/16	15	20
1/2	9/16	23/410	9/16	30	41
5/8	3/4	31/8 121/2	11/16	60	81
3/4	7/8	31/215	13/16	100	136
7/8	1	31/2 171/2	15/16	125	169
1	1 1/8	420	1 1/8	150	203
1 1/4	1 3/8	525	1 3/8	200	271

HIT-V

	Ø d₀ [mm]	h _{et} [mm]	Ø d _f [mm]	T _{max} [Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	100480	26	200
M27	30	110540	30	270
M30	35	120600	33	300

HILTI HIS-N AND HIS-RN THREADED INSERTS

Ø d [inch]	Ø d₀ [inch]	h _{et} [inch]	Ø d _f [inch]	h₅ [inch]	T _{max} [ft- lb]	T _{max} [Nm]
3/8	11/16	4 ³ /8	7/16	3/815/16	15	20
1/2	7/8	5	9/16	1/21 3/16	30	41
5/8	1 1/8	6 3/4	11/16	5/81 1/2	60	81
3/4	1 1/4	8 1/8	13/16	3/417/8	100	136

Ø d [mm]	Ø d ₀ [mm]	h _{et} [mm]	Ø d _f [mm]	h₅ [mm]	T _{max} [Nm]
M8	14	90	9	820	10
M10	18	110	12	1025	20
M12	22	125	14	1230	40
M16	28	170	18	1640	80
M20	32	205	22	2050	150

FIGURE 4—INSTALLATION PARAMETERS (Continued)

TABLE 1—DESIGN TABLE INDEX

Design			Fractiona	I		Metric		
Design 1	lable	Table	•	Page	Table	•	Page	
Standard Threaded Rod	Steel Strength - N _{sa} , V _{sa}	6A		13	14		20	
	Concrete Breakout - N _{cb} , N _{cbg} , V _{cb} , V _{cbg} , V _{cb} , 7			15	15		21	
ļ	Bond Strength - N _a , N _{ag} 11-13		3	18-19	19-21		25-26	
			•					
Hilti HIS-N and HIS-RN Internally Threaded Insert	Steel Strength - N _{sa} , V _{sa}	26		30	26		30	
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cpg}	27		31	27		31	
	Bond Strength - Na, Nag	28-30)	32-33	28-30)	32-33	
Design	Table .	Fract	ional	EU N	letric	Cana	adian	
Design 1	ladie	Table	Page	Table	Page	Table	Page	
Steel Reinforcing Bars	Steel Strength - N _{sa} , V _{sa}	6B	14	14	20	22	27	
	Concrete Breakout - N _{cb} , N _{cbg} , V _{cb} ,	7	15	15	21	22	27	

Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cpg}	7	15	15	21	23	27
Bond Strength - Na, Nag	8-10	16-17	16-18	22-24	24-25B	28-29
Determination of development length for post-installed reinforcing bar connections	31	34	32	34	33	35

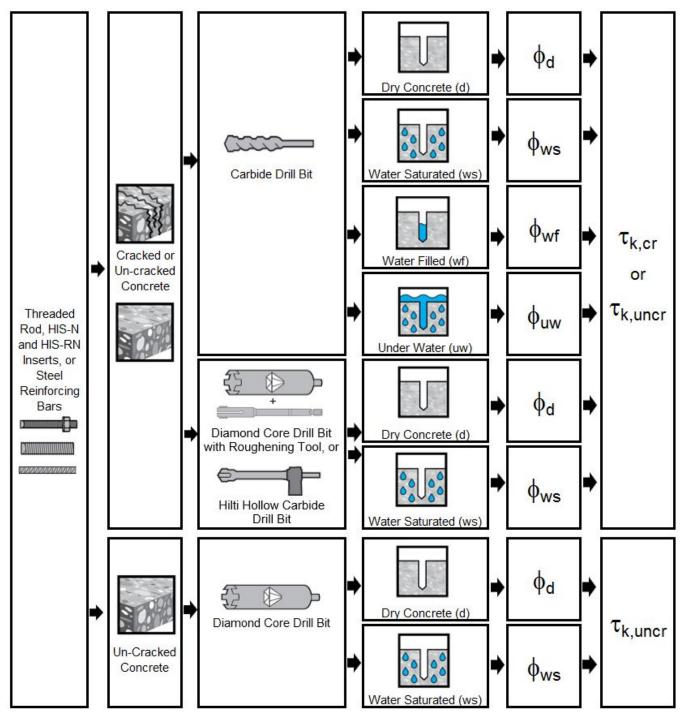


FIGURE 5—FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

-	ADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, f _{ya}	f _{uta} /f _{ya}	Elongation, min. percent ⁷	Reduction of Area, min. percent	Specification for nuts ⁸
	ASTM A193 ² Grade B7 ≤ 2 ¹ / ₂ in. (≤ 64 mm)	psi (MPa)	125,000 (862)	105,000 (724)	1.19	16	50	ASTM A563 Grade DH
	ASTM F568M ³ Class 5.8 M5 (¹ / ₄ in.) to M24 (1 in.) (equivalent to ISO 898-1)	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10	35	ASTM A563 Grade DH ⁹ DIN 934 (8-A2K)
STEEL	ASTM F1554, Grade 36 ⁷	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40	ASTM A194 or ASTM A563
30N ST	ASTM F1554, Grade 55 ⁷	psi (MPa)	75,000 (517)	55,000 (379)	1.36	21	30	ASTM A194 or ASTM A563
CARBON	ASTM F1554, Grade 105 ⁷	psi (MPa)	125,000 (862)	105,000 (724)	1.19	15	45	ASTM A194 or ASTM A563
	ISO 898-1⁴Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	DIN 934 Grade 6
	ISO 898-1 ⁴ Class 8.8	MPa (psi)	800 (116,000)	640 (92,800)	1.25	12	52	DIN 934 Grade 8
	ASTM F593 ⁵ CW1 (316) ¹ / ₄ -in. to ⁵ / ₈ -in.	psi (MPa)	100,000 (689)	65,000 (448)	1.54	20	-	ASTM F594
STEEL	ASTM F593 ⁵ CW2 (316) ³ / ₄ -in. to 1 ¹ / ₂ -in.	psi (MPa)	85,000 (586)	45,000 (310)	1.89	25	-	ASTM F594
	ASTM A193 Grade 8(M), Class 1 ² - 1 ¼-in.	psi (MPa)	75,000 (517)	30,000 (207)	2.50	30	50	ASTM F594
STAINLESS	ISO 3506-1 ⁶ A4-70 M8 – M24	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40	-	ISO 4032
	ISO 3506-1 ⁶ A4-50 M27 – M30	MPa (psi)	500 (72,500)	210 (30,450)	2.38	40	-	ISO 4032

¹Hilti HIT-RE 500 V3 adhesive may be used in conjunction with all grades of continuously threaded carbon or stainless steel rod (all-thread) that comply with the code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

³Standard Specification for Alloy-Steel and Alloy Steel Externally Threaded Metric Fasteners ³Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners ⁴Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs ⁵Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

⁶Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs ⁷Based on 2-in. (50 mm) gauge length except for A 193, which are based on a gauge length of 4d and ISO 898, which is based on 5d.

⁸Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

⁹Nuts for fractional rods.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING BAR SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength, f _{ya}
ASTM A615 ¹ Gr. 60	psi	90,000	60,000
	(MPa)	(620)	(414)
ASTM A615 ¹ Gr. 40	psi	60,000	40,000
ASTMARTS GI. 40	(MPa)	(414)	(276)
ASTM A706 ² Gr. 60	psi	80,000	60,000
ASTMA706 GI. 60	(MPa)	(550)	(414)
DIN 488 ³ BSt 500	MPa	550	500
	(psi)	(79,750)	(72,500)
CAN/CSA-G30.18 ⁴ Gr. 400	MPa	540	400
CAN/CSA-G30.10 GI. 400	(psi)	(78,300)	(58,000)

¹Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

²Standard Specification for Low Alloy Steel Deformed and Plain Bars for Concrete Reinforcement

³Reinforcing steel; reinforcing steel bars; dimensions and masses

⁴Billet-Steel Bars for Concrete Reinforcement

TABLE 4—SPECIFICATIONS AND PHYSICAL PROPERTIES OF FRACTIONAL AND METRIC HIS-N AND HIS-RN INSERTS

HILTI HIS-N AND HIS-RN INSERTS		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength, fya
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN	psi	71,050	56,550
1561 9SMnPb28K	(MPa)	(490)	(390)
Stainless Steel	psi	101,500	50,750
EN 10088-3 X5CrNiMo 17-12-2	(MPa)	(700)	(350)

TABLE 5—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON BOLTS, CAP SCREWS AND STUDS FOR USE WITH HIS-N AND HIS-RN INSERTS^{1,2}

BOLT, CAP SCREW OR STUD SPECIFICATION		Minimum specified ultimate strength f _{uta}	Minimum specified yield strength 0.2 percent offset fya	f _{uta} /f _{ya}	Elongation, min.	Reduction of Area, min.	Specification for nuts ⁶
ASTM A193 Grade B7	psi	125,000	105,000	1.119	16	50	ASTM A563 Grade DH
ASTMATES GIAGE DI	(MPa)	(862)	(724)	1.119	10	50	ASTM AS0S Glade DIT
SAE J429 ³ Grade 5	psi	120,000	92,000	1.30	14	35	SAE J995
SAE J429 GIAGE 5	(MPa)	(828)	(634)	1.30	14	55	SAE 1995
ASTM A325 ⁴ ¹ / ₂ to 1-in.	psi	120,000	92,000	1.30	14	35	A563 C, C3, D, DH,
ASTM AS25 /2 to 1-in.	(MPa)	(828)	(634)	1.30	14	55	DH3 Heavy Hex
ASTM A193 ⁵ Grade B8M (AISI	psi	110,000	95,000	1.16	15	45	ASTM F594 ⁷
316) for use with HIS-RN	(MPa)	(759)	(655)	1.10	15	40	Alloy Group 1, 2 or 3
ASTM A193 ⁵ Grade B8T (AISI	psi	125,000	100,000	1.25	12	35	ASTM F594 ⁷
321) for use with HIS-RN	(MPa)	(862)	(690)	1.20	12	55	Alloy Group 1, 2 or 3

¹Minimum Grade 5 bolts, cap screws or studs must be used with carbon steel HIS inserts.
 ²Only stainless steel bolts, cap screws or studs must be used with HIS-RN inserts.
 ³Mechanical and Material Requirements for Externally Threaded Fasteners
 ⁴Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
 ⁵Standard Specification for Minus Steel and Steinbace Steel Bolting Material for Hint Temperature Specification

⁵Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

⁶Nuts must have specified minimum proof load stress equal to or greater than the specified minimum full-size tensile strength of the specified stud.

⁷Nuts for stainless steel studs must be of the same alloy group as the specified bolt, cap screw, or stud.

Fractional Threaded Rod

Steel Strength

TABLE 6A-STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD

DESIG		Symbol	Units			Nomin	al rod diamet	er (in.)1		
DESIG	NINFORMATION	Symbol	Units	³ /8	¹ / ₂	⁵ /8	3/4	⁷ /8	1	1 ¹ /4
	2	,	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Rod O.	D.	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
Ded off		4	in.2	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691
Rod en	ective cross-sectional area	A _{se}	(mm ²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)
			lb	5,620	10,290	16,385	24,250	33,470	43,910	70,260
_	Nominal strength as governed by steel	Nsa	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)
5.8 5.8	strength	14	lb	3,370	6,175	9,830	14,550	20,085	26,345	42,155
89 SS		V _{sa}	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)
ISO 898-1 Class 5.8	Reduction for seismic shear	αv,seis	-				1.0		• • •	• • •
<u> </u>	Strength reduction factor ϕ for tension ²	ϕ	-				0.65			
	Strength reduction factor ϕ for shear ²	ϕ	-				0.60			
		N	lb	9,685	17,735	28,250	41,810	57,710	75,710	121,135
B7	Nominal strength as governed by steel	Nsa	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
93	strength	14	lb	5,810	10,640	16,950	25,085	34,625	45,425	72,680
A1		V _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM A193	Reduction for seismic shear	αv,seis	-				1.0			
-S ⁴	Strength reduction factor ϕ for tension ³	φ	-				0.75			
	Strength reduction factor ϕ for shear ³	ϕ	-				0.65			
		Nsa	lb	-	8,230	13,110	19,400	26,780	35,130	56,210
54	Nominal strength as governed by steel	TNsa	(kN)	-	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)
F1554 36	strength	Vsa	lb	-	4,940	7,865	11,640	16,070	21,080	33,725
Σ.∺		♥ Sd	(kN)	-	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)	(150.0)
ASTM Gr.	Reduction factor, seismic shear	α _{v, seis}	-				0.6			
¥	Strength reduction factor ϕ for tension ³	ϕ	-				0.75			
	Strength reduction factor ϕ for shear ³	ϕ	-		1		0.65			1
	.	Nsa	lb	-	10,645	16,950	25,090	34,630	45,430	72,685
554	Nominal strength as governed by steel strength		(kN) Ib	-	(47.4) 6,385	(75.4) 10,170	(111.6) 15,055	(154.0) 20,780	(202.1) 27,260	(323.3) 43,610
F1554 55	strength	Vsa	(kN)	-	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)	(194.0)
≥ສີ	Reduction factor, seismic shear	<i>a</i> , <i>i</i>	(KIN)		(20.4)	(43.2)	1.0	(92.4)	(121.3)	(194.0)
ASTM Gr.	Strength reduction factor ϕ for tension ³	α _{v,seis} φ	-				0.75			
4	Strength reduction factor ϕ for shear ³	ϕ	-				0.65			
		Ψ	lb	-	17,740	28,250	41,815	57,715	75,715	121,135
4	Nominal strength as governed by steel	N _{sa}	(kN)	-	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
F1554 105	strength		lb	-	10,645	16,950	25,090	34,630	45,430	72,680
F15 105	ou ongui	Vsa	(kN)	-	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ΞŪ.	Reduction factor, seismic shear	α _{v,seis}	-				1.0	(/		(
ASTM Gr	Strength reduction factor ϕ for tension ³	φ	-				0.75			
	Strength reduction factor ϕ for shear ³	φ	-				0.65			
>		Nsa	lb	7,750	14,190	22,600	28,435	39,245	51,485	-
Š.	Nominal strength as governed by steel	INsa	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	-
93, ess	strength	Vsa	lb	4,650	8,515	13,560	17,060	23,545	30,890	-
En E		v sa	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	-
Sta	Reduction factor, seismic shear	α _{v,seis}	-).8			-
ASTM F593, (Stainless	Strength reduction factor ϕ for tension ²	φ	-				.65			-
4	Strength reduction factor ϕ for shear ²	φ	-				.60			-
۲		Nsa	lb				-			55,240
0 , 0 "	Nominal strength as governed by steel		(kN)				-			(245.7)
l 93 las ess	strength	Vsa	lb (kN)				-			33,145
A O li	$C \cup \overline{C}$ Reduction factor, seismic shear $\alpha_{v,seis}$ -				(147.4)					
MT (S)	$\sum_{n \in \mathcal{D}} \frac{\beta_n^n}{\beta_n^n} \frac{\beta_n^n}{\beta_n^n}$					0.8 0.75				
ASTM A193, G 8(M), Class 1 Stainless	0		-							
	Strength reduction factor ϕ for shear ²	ϕ	-				-			0.65

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf

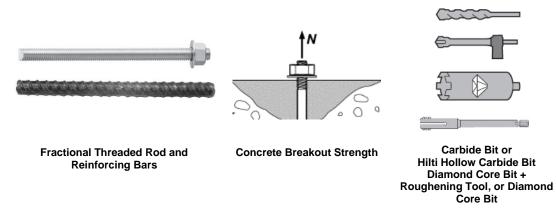
¹Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod.

²For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a brittle steel element.

³For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a ductile steel element.

Fractional Reinforcing Bars

DES		Symbol	Units			Nomina	al Reinforci	ng bar size	(Rebar)				
DEG		Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10		
Nor	ninal bar diameter	d	in.	³ /8	1/2	⁵ /8	3/4	⁷ /8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
NOI	inal bar diameter	a	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)		
Por	effective cross-sectional area	Ase	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.0	1.27		
Dai	ellective cross-sectional area	Ase	(mm ²)	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)		
		N	lb	6,600	12,000	18,600	26,400	36,000	47,400	60,000	76,200		
2	Nominal strength as governed by steel	Nsa	(kN)	(29.4)	(53.4)	(82.7)	(117.4)	(160.1)	(210.9)	(266.9)	(339.0)		
A61 9 40		V	lb	3,960	7,200	11,160	15,840	21,600	28,440	36,000	45,720		
		V _{sa}	(kN)	(17.6) (32.0) (49.6) (70.5) (96					(126.5)	(160.1)	(203.4)		
STM	Reduction for seismic shear	$\alpha_{V,seis}$	-				0.	70					
< ۲	Strength reduction factor ϕ for tension ²	ϕ	-				0.	65					
	Strength reduction factor ϕ for shear ²	ϕ	-				0.	60					
		N _{sa}	lb	9,900	18,000	27,900	39,600	54,000	71,100	90,000	114,300		
2	Nominal strength as governed by steel	INsa	(kN)	(44.0)	(80.1)	(124.1)	(176.2)	(240.2)	(316.3)	(400.4)	(508.5)		
A615 9 60		V	lb	5,940	10,800	16,740	23,760	32,400	42,660	54,000	68,580		
		V _{sa}	(kN)	(26.4)	(48.0)	(74.5)	(105.7)	(144.1)	(189.8)	(240.2)	(305.1)		
STM Grad	Reduction for seismic shear	αv,seis	-				0.	70					
Ϋ́	Strength reduction factor ϕ for tension ²	ϕ	-				0.	65					
	Strength reduction factor ϕ for shear ²	φ	-				0.	60					
		N	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600		
9	Nominal strength as governed by steel	N _{sa}	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(452.0)		
A706 9 60		14	lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960		
A A		Vsa	(kN)	(23.5)	(42.7)	(66.2)	(94.0)	(128.1)	(168.7)	(213.5)	(271.2)		
STM Grade	Reduction for seismic shear	αv,seis					0.	70	•		•		
Ϋ́	Strength reduction factor ϕ for tension ³	ϕ		0.75									
	Strength reduction factor ϕ for shear ³	φ					0.	65					


TABLE 6B—STEEL DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS

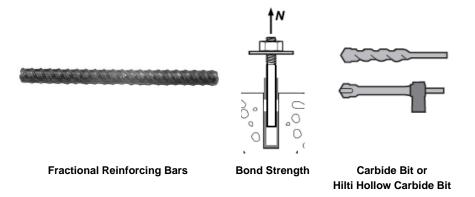
For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf

¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-14 Eq. (17.4.1.2) and Eq (17.5.1.2b)

or ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod. ² For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a brittle steel element.

³ For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a ductile steel element.

TABLE 7—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS ALL DRILLING METHODS1


						Nomina	l rod dia	meter (i	n.) / Reiı	nforcing	bar size)		
DESIGN INFORMATION	Symbol	Units	³ / ₈ or #3	¹ / ₂	#4	⁵ /8	#5	³ / ₄	#6	7/ ₈	#7	1 or #8	#9	1¹/₄ or #10
Effectiveness factor	k _{c,cr}	in-lb						-	7					
for cracked concrete	NC,C/	(SI)							.1)					
Effectiveness factor		in-lb							24					
for uncracked concrete	k _{c,uncr}	(SI)		-	-	-	-	(1	0)	-	-	-		-
Minimum	h _{ef,min}	in.	2 ³ / ₈	2 ³ / ₄	2 ³ / ₈	3 ¹ / ₈	3	3 ¹ / ₂	3	3 ¹ / ₂	3 ³ / ₈	4	4 ¹ / ₂	5
Embedment	I Ier,min	(mm)	(60)	(70)	(60)	(79)	(76)	(89)	(76)	(89)	(85)	(102)	(114)	(127)
Maximum	h	in.	7 ¹ / ₂	10	10	12 ¹ / ₂	12 ¹ / ₂	15	15	17 ¹ / ₂	17 ¹ / ₂	20	22 ¹ / ₂	25
Embedment	h _{ef,max}	(mm)	(191)	(254)	(254)	(318)	(318)	(381)	(381)	(445)	(445)	(508)	(572)	(635)
		in.	1 ⁷ / ₈	2 ¹ / ₂	2 ¹ / ₂	3 ¹ / ₈	3 ¹ / ₈	3 ³ / ₄	3 ³ / ₄	4 ³ / ₈	4 ³ / ₈	5	5 ⁵ /8	6 ¹ / ₄
Min. anchor spacing ³	S _{min}	(mm)	(48)	(64)	(64)	(79)	(79)	(95)	(95)	(111)	(111)	(127)	(143)	(159)
Min. edge distance ³	C _{min}	-	5	5d; or se	e Sectior	n 4.1.9 of	this rep	ort for de	esign with	n reduce	d minimu	ım edge	distance	S
Minimum concrete	h _{min}	in.		$h_{ef} + 1^{1}/$						h _{ef} + 2d ₀	(4)			
thickness		(mm)		(<i>h</i> _{ef} + 30))									
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-					See See	ction 4.1	.10 of thi	s report.				
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-						0.	65					
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-						0.	70					

For **SI**: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

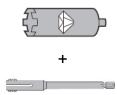
¹Additional setting information is described in Figure 9A and 9B, Manufacturers Printed Installation Instructions (MPII). ²Values provided for post-installed anchors under Condition B without supplementary reinforcement as defined in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. ³Eac installations with 13/ inch adda distance, refer to Section 4.1.0 for appearing and maximum torsus requirements.

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements. ⁴ *d*₀ = hole diameter.

TABLE 8—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

DEOL							No	minal reinfo	orcing bar s	size		
DESIG	3N INF	ORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minim		- h dua - u é	-	in.	2 ³ /8	2 ³ /8	3	3	3 ³ /8	4	41⁄2	5
winim	um En	nbedment	h _{ef,min}	(mm)	(60)	(60)	(76)	(76)	(85)	(102)	(114)	(127)
Maxim		nbedment	h	in.	7½	10	12½	15	17½	20	221⁄2	25
waxin	ium Er	nbeament	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
pe	ure 2	Characteristic bond strength	_	psi	1,350	1,360	1,390	1,410	1,410	1,420	1,390	1,340
concrete and Water Saturated Concrete	Temperature range A ²	in cracked concrete	T _{k,cr}	(MPa)	(9.3)	(9.4)	(9.6)	(9.7)	(9.7)	(9.8)	(9.6)	(9.3)
Satı	mpe	Characteristic bond strength		psi	1,770	1,740	1,720	1,690	1,670	1,640	1,620	1,590
e ter		in uncracked concrete	Tk,uncr	(MPa)	(12.2)	(12.0)	(11.9)	(11.7)	(11.5)	(11.3)	(11.2)	(11.0)
Wa	ure 2	Characteristic bond strength	_	psi	930	940	960	970	980	980	960	930
and Wat Concrete	e Bi	in cracked concrete	T _{k,cr}	(MPa)	(6.4)	(6.5)	(6.6)	(6.7)	(6.7)	(6.8)	(6.6)	(6.4)
ete	e status e stat			psi	1,220	1,200	1,190	1,170	1,150	1,130	1,120	1,100
oncr	in uncracked concrete		Tk,uncr	(MPa)	(8.4)	(8.3)	(8.2)	(8.1)	(7.9)	(7.8)	(7.7)	(7.6)
Dry co	Anch	or Category	-	-	1	1	1	1	1	1	1	1
ā	Strer	ngth Reduction factor	$\phi_{d,} \phi_{ws}$	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	ure 2	Characteristic bond strength	7	psi	1,000	1,010	1,040	1,060	1,070	1,090	1,070	1,050
	Temperature range A ²	in cracked concrete	Tk,cr	(MPa)	(6.9)	(6.9)	(7.2)	(7.3)	(7.4)	(7.5)	(7.4)	(7.2)
0	mpe	Characteristic bond strength	Tk,uncr	psi	1,300	1,290	1,290	1,280	1,270	1,260	1,240	1,240
hole		in uncracked concrete		(MPa)	(9.0)	(8.9)	(8.9)	(8.8)	(8.7)	(8.7)	(8.6)	(8.6)
Water-filled hole	emperature range B ²	Characteristic bond strength	-	psi	690	700	720	730	740	750	740	720
er-fi	erati le B	in cracked concrete	T _{k,cr}	(MPa)	(4.7)	(4.8)	(5.0)	(5.0)	(5.1)	(5.2)	(5.1)	(5.0)
Nati	mpera ange	Characteristic bond strength		psi	900	890	890	880	870	870	860	860
_	Te	in uncracked concrete	T _{k,uncr}	(MPa)	(6.2)	(6.1)	(6.1)	(6.1)	(6.0)	(6.0)	(5.9)	(5.9)
	Anch	or Category	-	-	3	3	3	3	3	3	3	3
	Stren	ngth Reduction factor	ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	are 2	Characteristic bond strength	Tk,cr	psi	860	890	920	940	960	990	970	980
	Temperature range A ²	in cracked concrete	rk,cr	(MPa)	(5.9)	(6.1)	(6.3)	(6.5)	(6.6)	(6.9)	(6.7)	(6.8)
ete	mpe	Characteristic bond strength	Tk.uncr	psi	1,140	1,130	1,140	1,140	1,140	1,150	1,130	1,150
oncr		in uncracked concrete	ικ,uncr	(MPa)	(7.9)	(7.8)	(7.9)	(7.9)	(7.9)	(7.9)	(7.8)	(8.0)
d cc	ure 2	Characteristic bond strength	7	psi	590	610	630	650	660	690	670	680
Submerged concrete	Temperature range B ²	in cracked concrete	Tk,cr	(MPa)	(4.1)	(4.2)	(4.4)	(4.5)	(4.6)	(4.7)	(4.6)	(4.7)
bm€	empera range	Characteristic bond strength	Thuman	psi	790	780	790	790	790	790	790	800
Su	Te	in uncracked concrete	Tk,uncr	(MPa)	(5.4)	(5.4)	(5.4)	(5.4)	(5.4)	(5.5)	(5.4)	(5.5)
	Anch	or Category	-	-	3	3	3	3	3	3	3	3
	Strer	ngth Reduction factor	φυω	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Reduc	ction fo	r seismic tension	αN,seis	-	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength *f*'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, t_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (t_c / 2,500)^{0.25} for uncracked concrete [For SI: (t_c / 17.2)^{0.25}] and (t_c / 2,500)^{0.15} for cracked concrete [For SI: (t_c / 17.2)^{0.15}]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Reinforcing Bars

Diamond Core Bit + Roughening Tool

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESIGN			Symphol	Units			Nomir	nal reinforcing l	bar size
DESIGN	INFORMATION		Symbol	Units	#5	#6	#7	#8	#9
Minimum	Embedment		h _{ef,min}	in.	3	3	3 ³ /8	4	41⁄2
winning	Linbedment		n er, min	(mm)	(76)	(76)	(85)	(102)	(115)
Maximum	n Embedment		b.	in.	12½	11 ¼	17½	20	221/2
IVIAAIITTUIT			h _{ef,max}	(mm)	(318)	(286)	(445)	(508)	(573)
te		Characteristic bond strength in cracked	Tk.cr	psi	970	990	990	``	
Icre	Temperature		16,07	(MPa)	(6.7)	(6.8)	(6.8)	(6.9)	(6.7)
con	range A ²	Characteristic bond strength in uncracked	Tk,uncr	psi	1,720	1,690	1,670	1,640	1,620
ate		concrete		(MPa)	(11.9)	(11.7)	(11.5)	(11.3)	(11.2)
saturated		Characteristic bond strength in cracked	T _{k.cr}	psi	670	680	680	690	670
er	Temperature	concrete	1,07	(MPa)	(4.6)	(4.7)	(4.7)	(4.8)	(4.6)
d water	range B ²	Characteristic bond strength in uncracked	Tk.uncr	psi	1,190	1,170	1,150	1,130	1,120
and		concrete	-n, unor	(MPa)	(8.2)	(8.1)	(7.9)	(7.8)	(7.7)
Dry	Anchor Catego	ory	-	-	1	1	1	1	1
	Strength Reduction factor		φd, φws	-	0.65	0.65	0.65	0.65	0.65
Reductio	n for seismic tens	sion	<i>α</i> N, seis	-	0.9	0.9	0.9	0.9	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ f'c ≤ 8,000 psi) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

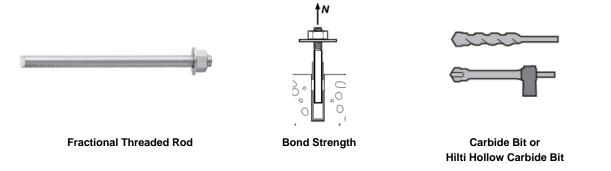
²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Reinforcing Bars

Bond Strength

Diamond Core Bit


DES	IGN INFORMATION		Symbol	Units			Nomi	nal reinfo	orcing ba	r size		
DES	IGN INFORMATION	4	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minim	num Embedment		h	in.	2 ³ /8	2 ³ /8	3	3	3 ³ /8	4	4½	5
WIINII	num Embedment		h _{ef,min}	(mm)	(60)	(60)	(76)	(76)	(85)	(102)	(114)	(127)
Maxi	Maximum Embedment		h _{ef,max}	in.	7½	10	12½	15	17½	20	221⁄2	25
waxi			N _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
te	Temperature	Temperature Characteristic bond strength		psi	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150
water concrete	range A ²	in uncracked concrete	Tk,uncr	(MPa)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)	(8.0)
nd wa	Temperature	Characteristic bond strength	-	psi	800	800	800	800	800	800	800	800
	range B ² range B ² in uncracked concrete		$\tau_{k,uncr}$	(MPa)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)	(5.5)
Dry	ద 킕 Anchor Category		-	-	2	2	3	3	3	3	3	3
<i>i</i>	ö Strength Reduction factor		φd, φws	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

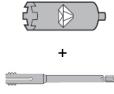
¹Bond strength values correspond to concrete compressive strength f'c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be ²Temperature range B: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are

roughly constant over significant periods of time.

TABLE 11—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

	DES	IGN INFORMATION	Symbol	Units			Nomin	al rod dian	neter (in.)		
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3/ ₈	1/ ₂	5/ ₈	3/4	7/ ₈	1	1 ¹ / ₄
Minimu	ım Embe	dmont	h	in.	2 ³ /8	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	5
wiiriiriu		ument	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Maxim	um Embe	admont	h.	in.	7½	10	12½	15	17½	20	25
IVIAXIIII		ument	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
	ire	Characteristic bond strength	_	psi	1,280	1,270	1,260	1,250	1,240	1,240	1,180
	Temperature range A ²	in cracked concrete	$ au_{\kappa,cr}$	(MPa)	(8.8)	(8.7)	(8.7)	(8.6)	(8.6)	(8.5)	(8.1)
ater te	mpe	Characteristic bond strength	-	psi	2,380	2,300	2,210	2,130	2,040	1,960	1,790
Dry concrete and Water Saturated Concrete	Te	in uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(16.4)	(15.8)	(15.3)	(14.7)	(14.1)	(13.5)	(12.4)
Coi Coi	are	Characteristic bond strength	-	psi	880	870	870	860	860	850	810
cret	Temperature range B ²	in cracked concrete	$ au_{\kappa,cr}$	(MPa)	(6.1)	(6.0)	(6.0)	(5.9)	(5.9)	(5.9)	(5.6)
con atura	mpe rang	Characteristic bond strength	_	psi	1,640	1,590	1,530	1,470	1,410	1,350	1,240
S. S.	Te	in uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(11.3)	(10.9)	(10.5)	(10.1)	(9.7)	(9.3)	(8.5)
	Anchor	Category	-	-	1	1	1	1	1	1	1
	Strengt	h Reduction factor	φd, φws	$\phi_{\delta}, \phi_{\omega\sigma}$	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Ire	Characteristic bond strength	_	psi	940	940	940	940	940	950	920
	e A²	in cracked concrete	τ _{κ,cr}	(MPa)	(6.5)	(6.5)	(6.5)	(6.5)	(6.5)	(6.5)	(6.4)
	Temperature range A ²	Characteristic bond strength n uncracked concrete	_	psi	1,760	1,700	1,660	1,600	1,550	1,500	1,400
hole	Te	in uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(12.1)	(11.7)	(11.4)	(11.0)	(10.7)	(10.4)	(9.7)
led	Ire	Characteristic bond strength	_	psi	650	650	650	650	650	650	640
Water-filled hole	Temperature range B ²	in cracked concrete	$ au_{\kappa,cr}$	(MPa)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.4)
Wat	empera range	Characteristic bond strength	_	psi	1,210	1,170	1,140	1,110	1,070	1,040	970
F	Te	in uncracked concrete	$\tau_{\kappa,uncr}$	(MPa)	(8.4)	(8.1)	(7.9)	(7.6)	(7.4)	(7.1)	(6.7)
	Anchor	Category	-	-	3	3	3	3	3	3	3
	Strengt	h Reduction factor	φ _{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	are	Characteristic bond strength	-	psi	820	830	830	840	850	860	860
	Temperature range A ²	in cracked concrete	$ au_{\kappa,cr}$	(MPa)	(5.7)	(5.7)	(5.8)	(5.8)	(5.9)	(5.9)	(5.9)
ete	empera range	Characteristic bond strength	-	psi	1,530	1,500	1,470	1,430	1,400	1,370	1,300
ncre	Te	in uncracked concrete	$ au_{\kappa,uncr}$	(MPa)	(10.6)	(10.3)	(10.1)	(9.9)	(9.6)	(9.4)	(9.0)
d Sc	_ s	Characteristic bond strength	7	psi	570	570	580	580	590	590	590
erge	eratui je B ²	in cracked concrete	$ au_{\kappa,cr}$	(MPa)	(3.9)	(3.9)	(4.0)	(4.0)	(4.0)	(4.1)	(4.1)
Submerged concrete	Temperature range B ²	Characteristic bond strength	π	psi	1,060	1,030	1,010	990	960	940	900
SL	Τe	in uncracked concrete	Tк,uncr	(MPa)	(7.3)	(7.1)	(7.0)	(6.8)	(6.6)	(6.5)	(6.2)
	Anchor	Category	-	-	3	3	3	3	3	3	3
	Strength Reduction factor ϕ_{uw} -		-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	
Reduct	Reduction for seismic tension		α <i>N,sei</i> s	-	0.92	0.93	0.95	1	1	1	1

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi ¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.26}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$] and $(f_c/2,500)^{0.15}$ for cracked concrete [For SI: $(f_c/17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = $130^{\circ}F(55^{\circ}C)$, Maximum long term temperature = $110^{\circ}F(43^{\circ}C)$.

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Threaded Rod

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DEOK			Symbol	Unite		Nomina	I rod diamet	er (in.)	
DESI	GN INFORMATIO	IN	Symbol	Units	⁵ /8	3⁄4	7/8	1	1¼
Minim	um Embedment		h _{ef.min}	in.	3 ¹ /8	3 ¹ / ₂	31⁄2	4	5
			ner,min	(mm)	(79)	(89)	(89)	(102)	(127)
Movin	num Embedment		h	in.	12½	11¼	17½	20	25
Waxin			h _{ef,max}	(mm)	(318)	(286)	(445)	(508)	(635)
ete		Characteristic bond strength in		psi	880	875	825		
concrete	Temperature cracked concrete		Tk,cr	(MPa)	(6.1)	(6.0)	(6.0)	(6.0)	(5.7)
-	range A ²	Characteristic bond strength in	_	psi	2,210	2,130	2,040	1,960	1,790
saturated		uncracked concrete	Tk,uncr	(MPa)	(15.3)	(14.7)	(14.1)	(13.5)	(12.4)
atura		Characteristic bond strength in		psi	610	605	605	600	570
	Temperature	cracked concrete	Tk,cr	(MPa)	(4.2)	(4.2)	(4.2)	(4.1)	(3.9)
water	range B ²	Characteristic bond strength in		psi	1,530	1,470	1,410	1,350	1,240
and v		uncracked concrete	Tk,uncr	(MPa)	(10.5)	(10.1)	(9.7)	(9.3)	(8.5)
ry al	Anchor Categor	у У	-	-	1	1	1	1	1
D	Strength Reduc	tion factor	φd, φws	-	0.65	0.65	0.65	0.65	0.65
Reduc	ction for seismic te	ension	α <i>N</i> ,seis	-	0.95 1 1 1 1				1

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ fc ≤ 8,000 psi [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

²Temperature range A: Maximum short term temperature = $130^{\circ}F$ (55°C), Maximum long term temperature = $110^{\circ}F$ (43°C). Temperature range B: Maximum short term temperature = $176^{\circ}F$ (80°C), Maximum long term temperature = $110^{\circ}F$ (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Threaded Rod

Bond Strength

Diamond Core Bit

TABLE 13—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

DESIC		a	Symbol	Units			Nomin	al rod diame	ter (in.)		
DESIG				Units	³ /8	1/2	⁵ /8	3⁄4	7/ ₈	1	1 ¼
Minimu	Minimum Embodment		h	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	5
WIITITT	Minimum Embedment		h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Maxim	Maximum Embedment		b.	in.	7½	10	12½	15	17½	20	25
Waxim			h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
	Temperature	Characteristic bond		psi	1,550	1,550	1,550	1,550	1,550	1,550	1,550
e and ated	range A ²	strength in uncracked concrete	T _{k,uncr}	(MPa)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)	(10.7)
satura	Temperature	Characteristic bond		psi	1,070	1,070	1,070	1,070	1,070	1,070	1,070
Dry concrete Water satura	strength in uncracked concrete		Tk,uncr	(MPa)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)
Na Wa	Anchor Category		-	-	2	2	3	3	3	3	3
	Strength Reduction factor		$\phi_{d,} \phi_{ws}$	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section Bond strength Values correspond to concrete compressive strength $r_c = 2,500$ ps (17.2 Mr a) (minimum or 24 Mr a) is required under Abite Appendix E, occurs 5.1.1]. For concrete compressive strength, f_c , between 2,500 ps (17.2 MPa) and 8,000 ps (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Metric Threaded Rod and EU Metric **Reinforcing Bars**

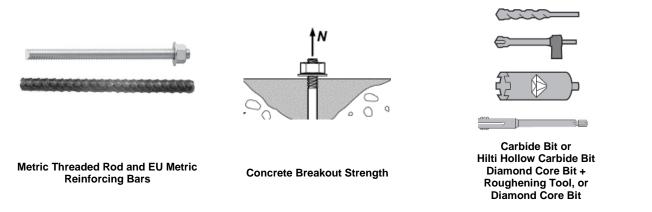

Steel Strength

TABLE 14—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS

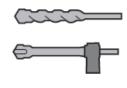
DESI	GN INFORMATION	Symbol	Units				Nomina	I rod diame	ter (mm) ¹			
DESI	GNINFORMATION	Symbol	Units	8	10	12	10	6	20	24	27	30
Rod (Outside Diameter	d	mm	8	10	12	16		20	24	27	30
			(in.) mm ²	(0.31) 36.6	(0.39) 58.0	(0.47 84.3).79) 245	(0.94) 353	(1.06) 459	(1.18) 561
Rod e	effective cross-sectional area	Ase	(in. ²)	(0.057)	(0.090)	(0.13			.380)	(0.547)	(0.711)	(0.870)
			kN	18.3	29.0	42.0	78	.5 1	22.5	176.5	229.5	280.5
	Nominal strength as	N _{sa}	(lb)	(4,114)	(6,519)	(9,476	5) (17,6	647) (27	7,539)	(39,679)	(51,594)	(63,059)
	governed by steel strength		kN	11.0	14.5	25.5	47	.0 7	73.5	106.0	137.5	168.5
98-` 5.8		V _{sa}	(lb)	(2,648)	(3,260)	(5,685	5) (10,5	588) (16	6,523)	(23,807)	(30,956)	(37,835)
ISO 898-1 Class 5.8	Reduction for seismic shear	$\alpha_{V,seis}$	-					1.00			1	
	Strength reduction factor for tension ²	φ	-					0.65				
	Strength reduction factor for shear ²	φ	-					0.60				
			kN	29.3	46.5	67.5	125	5.5 1	96.0	282.5	367.0	449.0
	Nominal strength as	N _{sa}	(lb)	(6,582)	(10,431)) (15,16	1) (28,2	236) (44	4,063)	(63,486)	(82,550)	(100,894)
	governed by steel strength		kN	17.6	23.0	40.5	75	.5 1	17.5	169.5	220.5	269.5
38-1 8.8		Vsa	(lb)	(3,949)	(5,216)	(9,097	') (16.9	(26	6,438)	(38,092)	(49,530)	(60,537)
ISO 898-1 Class 8.8	Reduction for seismic shear							(- , ,	(
	Strength reduction factor for tension ²	φ	-					0.65				
	Strength reduction factor for shear ²	φ	-					0.60				
			kN	25.6	40.6	59.0	109	9.9 1	71.5	247.1	229.5	280.5
	Nominal strength as	N _{sa}	(lb)	(5,760)	(9,127)	(13,26			3,555)	(55,550)	(51,594)	(63,059)
ass	governed by steel strength		kN	15.4	20.3	35.4	65	, ,	02.9	148.3	137.7	168.3
1 Cli less		Vsa	(lb)	(3,456)	(4,564)	(7,960			3,133)	(33,330)	(30,956)	(37,835)
3506-1 Class t Stainless ³	Reduction for seismic	αv,seis	-	(0,100)	(1,001)	(1,000	(11,0	0.80	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(00,000)	(00,000)	(01,000)
ISO :	shear Strength reduction factor	φ	-					0.65				
	for tension ² Strength reduction factor	φ	-					0.60				
	for shear ²	,				N	ominal reinf	forcing bar	diameter (mm)		
DESI	GN INFORMATION	Symbol	Units	10	12	14	16	20	25	28	30	32
Nami	nal has diamatas		mm	10.0	12.0	14.0	16.0	20.0	25.0	28.0	30.0	32.0
INOMI	nal bar diameter	d	(in.)	(0.394)	(0.472)	(0.551)	(0.630)	(0.787)	(0.984)	(1.102)	(1.224)	(1.260)
Baro	ffective cross-sectional area	Ase	mm ²	78.5	113.1	153.9	201.1	314.2	490.9	615.8	706.9	804.2
Dai C		Ase	(in. ²)	(0.122)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761)	(0.954)	(1.096)	(1.247)
		N	kN	43.0	62.0	84.5	110.5	173.0	270.0	338.5	388.8	442.5
8	Nominal strength as	N _{sa}	(lb)	(9,711)	(13,984)	(19,034)	(24,860)	(38,844)	(60,694)) (76,135) (87,406)	(99,441)
30/5(governed by steel strength		kN	26.0	37.5	51.0	66.5	103.0	162.0	203.0	233.3	265.5
st 55		Vsa	(lb)	(5,827)	(8,390)	(11,420)	(14,916)	(23,307)	(36,416)) (45,681) (52,444)	(59,665)
488 BSt 550/500	Reduction for seismic shear	αv,seis	-					0.70				•
DIN 4	Strength reduction factor for tension ²	φ	-					0.65				
	Strength reduction factor for shear ²	φ	-					0.60				
Volues	provided for common rod ma	torial turage	ore beer	d on on oifi	ad atranatha		d in accord	pppp with AC	1 240 44 5	a(17, 4, 1, 2)	or Eq. (17 5 1 f	2b) or ACI

¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-14 Eq (17.4.1.2) or Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod. ² For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318 D.4.3, as

applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. Values correspond to a brittle steel element. ³ A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30)

TABLE 15—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS ALL DRILLING METHODS¹


	Cumula al	Unite			Nominal rod diameter (mm)							
DESIGN INFORMATION	Symbol	Units	8	10	12	16	20)	24	27	30	
Minimum Embodmont	h	mm	60	60	70	80	90) ^	00	110	120	
Minimum Embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5	5) (3	3.9)	(4.3)	(4.7)	
Maximum Embedment	h	mm	160	200	240	320	40	0 4	180	540	600	
	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.	7) (1	8.9)	(21.4)	(23.7)	
Min. anchor spacing ³	S _{min}	mm	40	50	60	80	10	0 ^	20	135	150	
win. anchor spacing	Smin	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9	9) (4	4.7)	(5.3)	(5.9)	
Min. edge distance ³	C _{min}	-	5d; or s	ee Section	4.1.9 of th	is report fo	or design v	vith reduce	ed minim	num edge d	istances	
Minimum concrete		mm	h _{ef} -	+ 30				1 O.1.(4)			
thickness	h _{min}	(in.)	(h _{ef} +	- 1 ¹ / ₄)	$h_{\rm ef} + 2d_{\rm o}^{(4)}$							
DESIGN INFORMATION	Symbol	Units			Nominal reinforcing bar diameter (mm)							
DESIGN INFORMATION	Symbol	Units	10	12	14	16	20	25	28	30	32	
Minimum Embedment	h	mm	60	70	80	80	90	100	112	120	128	
	h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)	
Maximum Embedment	h _{ef,max}	mm	200	240	280	320	400	500	560	600	640	
	l ef,max	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0) (23.7)	(25.2)	
Min. anchor spacing ³	Smin	mm	50	60	70	80	100	125	140	150	160	
	Ghim	(in.)	(2.0)	(2.4)	(2.8)	(3.2)	(3.9)	(4.9)	(5.5)	(5.9)	(6.3)	
Min. edge distance ³	C _{min}	-	5d; or s	ee Section	4.1.9 of th	is report fo	or design v	vith reduce	ed minin	num edge o	istances	
Minimum concrete		mm	h _{ef} + 30					0 1 (4)				
thickness	h _{min}	(in.)	$(h_{ef} + 1^{1}/4)$.)			n _{ef} -	+ 2 <i>d</i> _o ⁽⁴⁾				
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			S	ee Section	4.1.10 of	this report				
Effectiveness factor for		SI					7.1					
cracked concrete	k _{c,cr}	(in-lb)					(17)					
Effectiveness factor for		SI					10					
uncracked concrete	k _{c,uncr}	(in-lb)					(24)					
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-			0.65							
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-					0.70					


For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 9A and 9B, Manufacturers Printed Installation Instructions (MPII). ²Values provided for post-installed anchors installed under Condition B without supplementary reinforcement as defined in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. ³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

⁴ d_0 = hole diameter.

EU Metric Reinforcing Bars

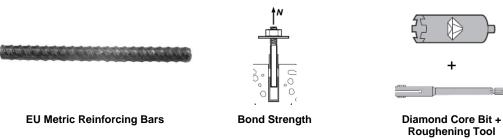
Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 16—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

							Non	ninal reinfo	orcing bar	diameter (mm)		
DESI	GN INFORMATIC)N	Symbol	Units	10	12	14	16	20	25	28	30	32
			,	mm	60	70	80	80	90	100	112	120	128
Minim	num Embedment		h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Maxim	num Embedment		h	mm	200	240	280	320	400	500	560	600	640
Waxii	num Embedment		h _{ef,max}	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
		Characteristic bond	_	MPa	9.3	9.4	9.5	9.6	9.7	9.8	9.7	9.5	9.3
đ	Temperature	strength in cracked concrete	$ au_{k,cr}$	(psi)	(1,350)	(1,360)	(1,380)	(1,390)	(1,410)	(1,420)	(1,400)	(1,370)	(1,350)
Dry concrete and Water saturated concrete	range A ²	Characteristic bond strength in uncracked		MPa	12.2	12.1	12.0	11.8	11.6	11.4	11.2	11.1	11.0
and		concrete	Tk,uncr	(psi)	(1,770)	(1,750)	(1,730)	(1,720)	(1,690)	(1,650)	(1,620)	(1,610)	(1,590)
ted		Characteristic bond	_	MPa	6.4	6.5	6.5	6.6	6.7	6.8	6.7	6.5	6.4
Dry concrete and er saturated conc	Temperature	strength in cracked concrete	Tk,cr	(psi)	(930)	(940)	(950)	(960)	(970)	(980)	(970)	(950)	(930)
Dry o er sa	range B ²	Characteristic bond strength in uncracked		MPa	8.4	8.3	8.3	8.2	8.0	7.8	7.7	7.7	7.6
L Vate		concrete	Tk,uncr	(psi)	(1,220)	(1,210)	(1,200)	(1,190)	(1,160)	(1,140)	(1,120)	(1,110)	(1,100)
-	Anchor Categor	у	-		1	1	1	1	1	1	1	1	1
	Strength Reduc	tion factor	$\phi_{ m d,} \phi_{ m ws}$		0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
		Characteristic bond strength in cracked	-	MPa	6.9	6.9	7.0	7.2	7.4	7.4	7.4	7.4	7.2
	Temperature	concrete	Tk,cr	(psi)	(1,000)	(1,010)	(1,020)	(1,040)	(1,070)	(1,080)	(1,080)	(1,070)	(1,050)
6	range A ²	Characteristic bond strength in uncracked	-	MPa	9.0	8.9	8.9	8.9	8.8	8.7	8.6	8.6	8.6
Water-filled hole		concrete	Tk,uncr	(psi)	(1,310)	(1,300)	(1,280)	(1,280)	(1,270)	(1,250)	(1,250)	(1,250)	(1,240)
led		Characteristic bond strength in cracked	-	MPa	4.7	4.8	4.8	5.0	5.1	5.1	5.1	5.1	5.0
er-fi	Temperature	concrete	Tk,cr	(psi)	(690)	(700)	(700)	(720)	(740)	(740)	(740)	(740)	(720)
Wat	range B ²	Characteristic bond strength in uncracked	Tk.uncr	MPa	6.2	6.2	6.1	6.1	6.1	6.0	5.9	5.9	5.9
		concrete	UK, UNCT	(psi)	(900)	(890)	(890)	(890)	(880)	(870)	(860)	(860)	(860)
	Anchor Categor	у	-	-	3	3	3	3	3	3	3	3	3
	Strength Reduc		ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
		Characteristic bond strength in cracked	Tk.cr	MPa	6.0	6.1	6.2	6.3	6.6	6.8	6.8	6.8	6.8
	Temperature	concrete	UK,CI	(psi)	(880)	(890)	(890)	(920)	(960)	(980)	(980)	(990)	(980)
ete	range A ²	Characteristic bond strength in uncracked	Tk,uncr	MPa	7.9	7.8	7.8	7.8	7.9	7.8	7.9	8.0	8.0
ncr		concrete	unci	(psi)	(1,140)	(1,140)	(1,130)	(1,140)	(1,140)	(1,140)	(1,140)	(1,150)	(1,160)
о р		Characteristic bond strength in cracked	Tk.cr	MPa	4.2	4.2	4.3	4.4	4.6	4.7	4.7	4.7	4.7
erge	Temperature	concrete	ur,ci	(psi)	(600)	(610)	(620)	(630)	(660)	(680)	(680)	(680)	(680)
Submerged concrete	range B ²	Characteristic bond strength in uncracked	T _{k,uncr}	MPa	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.5	5.5
S		concrete	¢ĸ,uncr	(psi)	(790)	(780)	(780)	(790)	(790)	(780)	(790)	(800)	(800)
	Anchor Categor	у	-	-	3	3	3	3	3	3	3	3	3
	Strength Reduc	tion factor	ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Redu	ction for seismic t	ension	(X.N,seis	-	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c / 17.2)^{0.25}$] and $(f_c / 2,500)^{0.15}$ for cracked concrete [For SI: $(f_c / 17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 17—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESI		N	Symbol	Units		Nominal rei	nforcing bar dia	ameter (mm)			
DESIC	Temperature range A ²	'N	Symbol	Units	14	16	20	25	28		
Minim			h _{ef.min}	mm	80	80	90	100	112		
IVIITIITI			l let,min	(in.)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)		
Movim			b.	mm	280	320	400	500	560		
IVIANIII			h _{ef,max}	(in.)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)		
		Characteristic bond strength in		MPa	6.7	6.7	6.8	6.9	6.8		
e	Temperature	cracked	Tk,cr	(psi)	(965)	(970)	(985)	(3.9) 500 (19.7)	(980)		
saturated concrete	range A ²	Characteristic bond strength in	_	MPa	12.0	11.8	11.6	11.4	11.2		
ated c			Tk,uncr	(psi)	(1,730)	(1,720)	(1,690)	(1,650)	(1,620)		
satura		Characteristic bond strength in	_	MPa	4.6	4.6	4.7	4.8	4.7		
water	Temperature	cracked concrete	T _{k,cr}	(psi)	(665)	(670)	(680)	(685)	(680)		
and	range B ²	Characteristic bond strength in		MPa	8.3	8.2	8.0	7.8	7.7		
Dry		uncracked concrete	Tk,uncr	(psi)	(1,200)	(1,190)	(1,160)	(1,140)	(1,120)		
	Anchor Catego	ry	-	-	1	1	1	1	1		
	Strength Reduc	tion factor	φd, φws	-	0.65	0.65	0.65	0.65	0.65		
Reduc	tion for seismic to	ension	αN,seis	-	0.9	0.9	4.6 4.7 4.8 370) (680) (685) 3.2 8.0 7.8 190) (1,160) (1,140) 1 1 1 .65 0.65 0.65				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ fc ≤ 8,000 psi) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

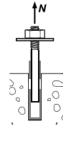
EU Metric Reinforcing Bars

Diamond Core Bit

TABLE 18—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

DESIGN			Sumbal	Units			Nom	ninal reinfo	orcing bar	diameter (mm)		
DESIGN			Symbol	Units	10	12	14	16	20	25	28	30	32
Minimarum	Minimum Fach admand		h _{ef.min}	mm	60	70	80	80	90	100	112	120	128
Winninnun	Minimum Embedment		l lef, min	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Movimu	Maximum Fachada ant		h _{ef,max}	mm	200	240	280	320	400	500	560	600	640
Maximu	Maximum Embedment			(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
q	Temperature	Characteristic bond strength in	_	MPa	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Saturated te	range A ²	uncracked concrete	Tk,uncr	(psi)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)
	Temperature	Characteristic bond strength in	_	MPa	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
d Wat conc	range B ² uncracked		Tk,uncr	(psi)	(800)	(800)	(800)	(800)	(800)	(800)	(800)	(800)	(800)
ry and	Anchor Category		-		2	2	2	3	3	3	3	3	3
Δ	Strength Reduction factor		φd, φws		0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength *f*_c = 2,500 psi (17.2 MPa)) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c / 2,500)^{0.25}$ for uncracked concrete [For SI: $(f'_c / 17.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Metric Threaded Rod

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

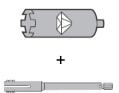
TABLE 19—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

DEG		FORMATION	Symbol	Units				ominal rod o	diameter (mr	n)		
DE	SIGN IN	FORMATION	Symbol	Units	8	10	12	16	20	24	27	30
Min	imum Fi	mbedment	h _{ef,min}	mm	60	60	70	80	90	100	110	120
IVIIII		libedillent	n er, min	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Max	kimum E	mbedment	h _{ef.max}	mm	160	200	240	320	400	480	540	600
				(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
ete	e Le	Characteristic bond strength in cracked	Tk.cr	MPa	8.8	8.8	8.8	8.7	8.6	8.5	8.5	8.4
ncre	eratu e A∂	concrete	uk,cr	(psi)	(1,280)	(1,280)	(1,270)	(1,260)	(1,250)	(1,240)	(1,230)	(1,220)
õ	npe	Characteristic bond		MPa	16.7	16.3	16.0	15.2	14.5	13.8	13.2	12.7
and Water Saturated Concrete	Temperature range A ²	strength in uncracked concrete	Tk,uncr	(psi)	(2,420)	(2,370)	(2,320)	(2,210)	(2,100)	(2,000)	(1,920)	(1,840)
atu	e	Characteristic bond		MPa	6.1	6.1	6.0	6.0	5.9	5.9	5.9	5.8
er S:	Temperature range B ²	strength in cracked concrete	Tk,cr	(psi)	(890)	(880)	(880)	(870)	(860)	(860)	(850)	(840)
Vat	empera range	Characteristic bond		MPa	11.5	11.3	11.0	10.5	10.0	9.5	9.1	8.7
V pue	Ter	strength in uncracked concrete	Tk,uncr	(psi)	(1,670)	(1,630)	(1,600)	(1,520)	(1,450)	(1,380)	(1,320)	(1,270)
Dry 8	Ancho	or Category	-	-	1	1	1	1	1	1	1	1
	Streng	th Reduction factor	φd, φws	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	e	Characteristic bond		MPa	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
	Temperature range A ²	strength in cracked concrete	Tk,cr	(psi)	(940)	(940)	(940)	(940)	(940)	(940)	(950)	(950)
	npe	Characteristic bond		MPa	12.3	12.1	11.8	11.4	11.0	10.5	10.2	9.8
Water-filled hole	Ten ra	strength in uncracked concrete	Tk,uncr	(psi)	(1,780)	(1,750)	(1,710)	(1,650)	(1,590)	(1,520)	(1,470)	(1,430)
lled	e	Characteristic bond		MPa	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
ter-fi	Temperature range B²	strength in cracked concrete	Tk,cr	(psi)	(650)	(650)	(650)	(650)	(650)	(650)	(650)	(650)
Wa	npe	Characteristic bond		MPa	8.5	8.3	8.2	7.9	7.6	7.2	7.0	6.8
	Ten ra	strength in uncracked concrete	Tk,uncr	(psi)	(1,230)	(1,210)	(1,180)	(1,140)	(1,100)	(1,050)	(1,020)	(990)
		or Category	-	-	3	3	3	3	3	3	3	3
	Streng	th Reduction factor	ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	e	Characteristic bond		MPa	5.7	5.7	5.7	5.7	5.8	5.9	6.0	6.0
	ratu ∋ A²	strength in cracked concrete	Tk,cr	(psi)	(820)	(820)	(830)	(830)	(840)	(860)	(870)	(870)
ste	mpera	Characteristic bond		MPa	10.7	10.5	10.4	10.1	9.8	9.5	9.3	9.1
oncre	Temperature range A ²	strength in uncracked concrete	Tk,uncr	(psi)	(1,550)	(1,530)	(1,500)	(1,460)	(1,420)	(1,380)	(1,350)	(1,320)
б	e	Characteristic bond		MPa	3.9	3.9	3.9	4.0	4.0	4.1	4.1	4.2
Submerged concrete	Temperature range B ²	strength in cracked concrete	T _{k,Cr}	(psi)	(570)	(570)	(570)	(580)	(580)	(590)	(600)	(600)
lbm	empera	Characteristic bond		MPa	7.4	7.3	7.2	7.0	6.8	6.6	6.4	6.3
Su	Ten rs	strength in uncracked concrete	Tk,uncr	(psi)	(1,070)	(1,060)	(1,040)	(1,010)	(980)	(950)	(930)	(910)
		or Category	-	-	3	3	3	3	3	3	3	3
	Streng	th Reduction factor	$\phi_{\rm UW}$	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Rec	duction f	or seismic tension	αN, seis	-	1	0.92	0.93	0.95	1	1	1	1

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).


Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

¹Bond strength values correspond to concrete compressive strength f'c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (5.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c / 2,500)^{0.25} for uncracked concrete [For SI: (f_c / 17.2)^{0.25}] and (f_c / 2,500)^{0.15} for cracked concrete [For SI: (f_c / 17.2)^{0.15}]. See Section 4.1.4 of this report for bond strength determination.

Metric Threaded Rod

Diamond Core Bit + Roughening Tool

TABLE 20—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESIGN			Cumhal	Units		Nomi	nal rod diameter	(mm)	
DESIGN			Symbol	Units	16	20	24	27	30
Minimun	n Embedment		h _{ef.min}	mm	80	90	100	110	120
Winning	In Embedment		ner,min	(in.)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Maximu	m Embedment		h _{ef.max}	mm	320	400	480	540	600
Maximu			r er, max	(in.)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
a)		Characteristic bond		MPa	6.1	6.0	6.0	6.0	5.9
concrete	Temperature	strength in cracked concrete	Tk,cr	(psi)	(880)	(875)	(870)	(860)	(855)
cor	range A ²	Characteristic bond		MPa	15.2	14.5	13.8	13.2	12.7
saturated		strength in uncracked concrete	T _{k,uncr}	(psi)	(2,210)	(2,100)	(2,000)	(1,920)	(1,840)
tur		Characteristic bond		MPa	4.2	4.2	4.2	4.2	4.1
water se	Temperature	strength in cracked concrete	Tk,cr	(psi)	(610)	(605)	(600)	(595)	(590)
Mai	range B ²	Characteristic bond		MPa	10.5	10.0	9.5	9.1	8.7
and		strength in uncracked concrete	T _{k,uncr}	(psi)	(1,520)	(1,450)	(1,385)	(1,320)	(1,270)
Dry	Anchor Catego	ry	-	-	1	1	1	1	1
	Strength Reduc	ction factor	$\phi_{d,\phi_{WS}}$	-	0.65	0.65	0.65	0.65	0.65
Reductio	on for seismic ten	sion	$\alpha_{N,seis}$	-	0.95	1	1	1	1

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ f'c ≤ 8,000 psi) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Metric Threaded Rod

Bond Strength

Diamond Core Bit

DESIC		1	Symbol	Units			No	minal rod o	diameter (n	nm)		
DESIG		N. AND	Symbol	Units	8	10	12	16	20	24	27	30
Minimu	Minimum Finch a des ant			mm	60	60	70	80	90	100	110	120
wiiniinu	Minimum Embedment			(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Maxim	Maximum Embadmant			mm	160	200	240	320	400	480	540	600
waximu	Maximum Embedment			(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
d crete	Temperature	Characteristic bond		MPa	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7
ete and ed conc	range A ²	strength in uncracked concrete	Tk,uncr	(psi)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)	(1,550)
	Temperature range B ² Characteristic bond strength in uncracked concrete		T _{k.uncr}	MPa	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
				(psi)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)	(1,070)
ater D			-	-	2	2	2	3	3	3	3	3
Wa	Strength Reduction factor			-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

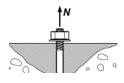
¹Bond strength values correspond to concrete compressive strength f^r_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be ²Temperature range B: Maximum short term temperature = 130°F (80°C), Maximum long term temperature = 110°F (43°C).

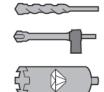
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Canadian Reinforcing Bars

Steel Strength

DE	DESIGN INFORMATION Nominal bar diameter Bar effective cross-sectional area		Units		Nomina	al reinforcing b	oar size					
DL,			Units	10 M	15 M	20 M	25 M	30 M				
Nor			mm	11.3	16.0	19.5	25.2	29.9				
INUI			(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)				
Por			mm ²	100.3	201.1	298.6	498.8	702.2				
Баг			(in. ²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)				
		N	kN	54.0	108.5	161.5	270.0	380.0				
	Nominal strength as governed by steel	N _{sa}	(lb)	(12,175)	(24,408)	(36,255)	(60,548)	(85,239)				
G30	strength	Vsa	kN	32.5	65.0	97.0	161.5	227.5				
		v _{sa}	(lb)	(7,305)	(14,645)	(21,753)	(36,329)	(51,144)				
SS/	Work Reduction for seismic shear Strength reduction factor for tension ² Strength reduction factor for shear ²		-			0.70						
			-		0.65							
			-	0.60								


For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq (17.4.1.2) or Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Other material specifications are admissible.

²For use with the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable.

Canadian Reinforcing Bars

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit or Diamond Core Bit

TABLE 23—CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT), OR DIAMOND CORE BIT¹

DESIGN INFORMATION	Symbol	Units		Nonm	inal reinforcing b	ar size						
DESIGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M					
Effectiveness factor for cracked concrete	k	SI			7.1							
	k _{c,cr}	(in-lb)			(17)							
Effectiveness factor for uncracked concrete	k	SI		10								
Ellectiveness factor for uncracked concrete	k _{c,uncr}	(in-lb)	(24)									
Minimum Embedment	h	mm	60	80	90	101	120					
Minimum Embedment	h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)					
Maximum Embedment	4	mm	226	320	390	504	598					
Maximum Embedment	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)					
Min has an aris a	_	mm	57	80	98	126	150					
Min. bar spacing ³	Smin	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)					
Min. adap diatanga3		mm	5d; or see	Section 4.1.9 of th	is report for desig	n with reduced mir	nimum edge					
Min. edge distance ³	Cmin	(in.)			distances		-					
Minimum concrete thickness	h _{min}	mm	h _{ef} + 30		h _{ef} +	20 (4)						
	Timin	(in.)	(<i>h</i> ef + 1 ¹ / ₄)		Hef +	2001						
Critical edge distance – splitting (for uncracked concrete)	Cac	-		See Se	ection 4.1.10 of this	s report.						
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-	0.65									
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-	0.70									

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 9, Manufacturers Printed Installation Instructions (MPII). ²Values provided for post-installed anchors installed under Condition B without supplementary reinforcement. ³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements. ⁴ *d*₀ = hole diameter.

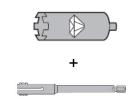
Canadian Reinforcing Bars

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 24—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT) 1

DESIG			Symbol	Units		Nomi	nal reinforcing ba	ar size	
DESIG			Symbol	Units	10M	15M	20M	25M	30M
Minimu	m Embodmont		b	mm	60	80	90	101	120
wiinimu	m Embedment		h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)
Maximu	Im Embedment		h _{ef,max}	mm	226	320	390	504	598
Maxime			nei,max	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)
-		Characteristic bond strength in cracked	-	MPa	9.4	9.6	9.7	9.8	9.5
rated	Temperature	concrete	Tk,cr	(psi)	(1,360)	(1,390)	(1,410)	(1,420)	(1,380)
atu	range A ²	Characteristic bond		MPa	12.1	11.8	11.7	11.3	11.1
er S		strength in uncracked concrete	Tk,uncr	(psi)	(1,760)	(1,720)	(1,690)	(1,650)	(1,610)
and Wat Concrete		Characteristic bond strength in cracked		MPa	6.5	6.6	6.7	6.8	6.5
onc	Temperature	concrete	T _{k,cr}	(psi)	(940)	(960)	(970)	(980)	(950)
Ce	range B ²	Characteristic bond		MPa	8.4	8.2	8.0	7.8	7.7
ncre	strength in uncracked		Tk,uncr	(psi)	(1,210)	(1,190)	(1,170)	(1,140)	(1,110)
<u></u> со	Anchor Categor		-	-	1	1	1	1	1
ā	Strength Reduc	tion factor	φd, φws	-	0.65	0.65	0.65	0.65	0.65
		Characteristic bond		MPa	6.9	7.2	7.3	7.4	7.3
	Temperature	strength in cracked concrete	Tk,cr	(psi)	(1,010)	(1,040)	(1,060)	(1,080)	(1,060)
	Temperature range A ²	Characteristic bond		MPa	8.9	8.9	8.8	8.6	8.5
ole		strength in uncracked concrete	T _{k,uncr}	(psi)	(1,300)	(1,280)	(1,270)	(1,250)	(1,240)
ed b		Characteristic bond		MPa	4.8	5.0	5.0	5.1	5.0
Water-filled hole	Temperature	strength in cracked concrete	Tk,cr	(psi)	(700)	(720)	(730)	(740)	(730)
Vate	range B ²	Characteristic bond		MPa	6.2	6.1	6.1	6.0	5.9
>		strength in uncracked concrete	Tk,uncr	(psi)	(900)	(890)	(880)	(860)	(850)
	Anchor Categor	у	-	-	3	3	3	3	3
	Strength Reduc	tion factor	ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45
		Characteristic bond		MPa	6.1	6.3	6.5	6.8	6.6
	Temperature	strength in cracked concrete	T _{k,cr}	(psi)	(880)	(920)	(940)	(980)	(960)
đ	range A ²	Characteristic bond		MPa	7.8	7.8	7.8	7.8	7.8
Icret		strength in uncracked concrete	Tk,uncr	(psi)	(1,130)	(1,140)	(1,140)	(1,140)	(1,130)
cor		Characteristic bond		MPa	4.2	4.4	4.5	4.7	4.6
.ged		strength in cracked concrete	Tk,cr	(psi)	(610)	(630)	(650)	(680)	(660)
Submerged concrete	Temperature range B ²	Characteristic bond strength in	7	MPa	5.4	5.4	5.4	5.4	5.4
0		uncracked concrete	₹k,uncr	(psi)	(780)	(790)	(780)	(780)	(780)
	Anchor Categor	у	-	-	3	3	3	3	3
	Strength Reduc	tion factor	$\phi_{\rm UW}$	-	0.45	0.45	0.45	0.45	0.45
Reducti	on for seismic ten	sion	αN, seis	-	0.9	0.9	0.9	0.9	0.9

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c / 2,500)^{0.25}$ for uncracked concrete [For SI: $(f'_c / 17.2)^{0.25}$] and $(f'_c / 2,500)^{0.15}$ for cracked concrete [For SI: $(f'_c / 17.2)^{0.15}$]. See Section

4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Canadian Reinforcing Bars

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 25A—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESIC	N INFORMATION		Symbol	Units	Nominal reinfo	orcing bar size
DESIG	IN INFORMATION		Symbol	Units	15M	20M
Minimary	m Embedment		h	mm	80	90
wiinimu	im Embedment		h _{ef,min}	(in.)	(3.1)	(3.5)
Maxim	um Embedment		h	mm	320	390
waximu	um Embedment		h _{ef,max}	(in.)	(12.6)	(15.4)
ete		Characteristic bond strength		MPa	6.7	6.8
ncr		in cracked concrete	Tk,cr	(psi)	(970)	(985)
	Temperature range A ² Characteristic bond strength in cracked concrete Characteristic bond strength			MPa	11.8	11.7
atec		in uncracked concrete	Tk,uncr	(psi)	(1,720)	(1,690)
Saturated		Characteristic bond strength	_	MPa	4.6	4.7
s	Temperature range D ²	in cracked concrete	τ _{k,cr}	(psi)	(670)	(680)
Water	Temperature range B ²	Characteristic bond strength	T _{k.uncr}	MPa	8.2	8.0
≥	in uncracked concrete			(psi)	(1,190)	(1,170)
and					1	1
Dry	Strength Reduction factor				0.65	0.65
Reduct	eduction for seismic tension			-	0.9	0.9

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ fc ≤ 8,000 psi) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Canadian Reinforcing Bars

Bond Strength

Diamond Core Bit

TABLE 25B—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

DESIC	N INFORMATION		Symbol	Units	Nominal reinforcing bar size						
DESIG			Symbol	Units	10M	15M	20M	25M	30M		
Minimu	m Embedment		h	mm	60	80	90	101	120		
wiininnu			h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)		
Maxim	um Embedment	h _{ef.max}	mm	226	320	390	504	598			
IVIAAIIIIU		l lef,max	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)			
ē	Temperature range A ²	Characteristic bond strength	-	MPa	8.0	8.0	8.0	8.0	8.0		
Water ated ete	Temperature range A	in uncracked concrete	Tk, uncr	(psi)	(1,150)	(1,150)	(1,150)	(1,150)	(1,150)		
	Tomporatura rango P ²	Characteristic bond strength	T _{k.uncr}	MPa	5.5	5.5	5.5	5.5	5.5		
and	Temperature range B ² In uncracked concrete			(psi)	(800)	(800)	(800)	(800)	(800)		
<u>ي بي ج</u>	- δ δ Anchor Category			-	2	3	3	3	3		
Δ	Strength Reduction facto	φd, φws	-	0.55	0.45	0.45	0.45	0.45			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, t'c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly

constant over significant periods of time.

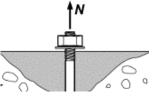
Fractional and Metric HIS-N and HIS-RN Internal Threaded Insert

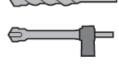
Steel Strength

TABLE 26—STEEL DESIGN INFORMATION FOR FRACTIONAL	AND METRIC HIS-N AND HIS-RN THREADED INSERTS ¹

DESI	GN RMATION	Symbol	Units	Nomina		o Screw D actional	iameter	Units	No		lt/Cap Scr mm) Metri	ew Diame ic	ter
				³ / ₈	¹ / ₂	⁵ /8	³ / ₄		8	10	12	16	20
		D	in.	0.65	0.81	1.00	1.09	mm	12.5	16.5	20.5	25.4	27.6
HIS I	nsert O.D.	D	(mm)	(16.5)	(20.5)	(25.4)	(27.6)	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
	nsert length	I	in.	4.33	4.92	6.69	8.07	mm	90	110	125	170	205
1131	Isert length	1	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.54)	(4.33)	(4.92)	(6.69)	(8.07)
	effective cross-	A _{se}	in. ²	0.0775	0.1419	0.2260	0.3345	mm ²	36.6	58	84.3	157	245
-	onal area		(mm ²)	(50)	(92)	(146)	(216)	(in. ²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)
	nsert effective	Ainsert	in. ²	0.178	0.243	0.404	0.410	mm ²	51.5	108	169.1	256.1	237.6
cross	-sectional area		(mm²)	(115)	(157)	(260)	(265)	(in. ²)	(0.080)	(0.167)	(0.262)	(0.397)	(0.368)
	Nominal steel	N _{sa}	lb	9,690	17,740	28,250	41,815	kN	-	-	-	-	-
3 B7	strength - ASTM	50	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(lb)	-	-	-	-	-
A193	A193 B7 ³ bolt/cap	V	lb	5,815	10,645	16,950	25,090	kN	-	-	-	-	-
▼ N	screw	V _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(lb)	-	-	-	-	-
ASTM /	Nominal steel		lb	12,645	17,250	28,680	29,145	kN	-	-	-	-	-
4	strength – HIS-N insert	N _{sa}	(kN)	(56.3)	(76.7)	(127.6)	(129.7)	(lb)	-	-	-	-	-
	Tho-N insen		lb	8,525	15,610	24,860	36,795	kN	_	_	_	_	_
S S	Nominal steel	N _{sa}	(kN)	(37.9)	(69.4)	(110.6)	(163.7)	(lb)	_	_	_	_	_
193 M S	strength – ASTM A193 Grade B8M		()	. ,	. ,	、 ,	、 ,	. ,					
A A B8I	SS bolt/cap screw	V _{sa}	lb	5,115	9,365	14,915	22,075	kN	-	-	-	-	-
STN			(kN)	(22.8)	(41.7)	(66.3)	(98.2)	(lb)	-	-	-	-	-
ASTM A193 Grade B8M SS	Nominal steel strength –	N _{sa}	lb	18,065	24,645	40,970	41,635	kN	-	-	-	-	-
	HIS-RN insert	r vsa	(kN)	(80.4)	(109.6)	(182.2)	(185.2)	(lb)	-	-	-	-	-
			lb	-	-	-	-	kN	29.5	46.5	67.5	125.5	196.0
	Nominal steel strength – ISO	N _{sa}	(kN)	-	-	-	-	(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)
98-1 8.8	898-1 Class 8.8		lb	-	-	-	-	kN	17.5	28.0	40.5	75.5	117.5
ISO 898-1 Class 8.8	bolt/cap screw	V _{sa}	(kN)	-	-	-	-	(lb)	(3,949)	(6,259)	(9,097)	(16,942)	(26,438)
<u>0</u> 0	Nominal steel		lb	-	-	-	-	kN	25.0	53.0	83.0	125.5	116.5
	strength –	N _{sa}	(kN)	-	-	_	-	(lb)	(5,669)	(11,894)	(18,628)	(28,210)	(26,176)
	HIS-N insert		lb		_	_	_	kN	25.5	40.5	59.0	110.0	171.5
ass	Nominal steel strength – ISO	N _{sa}	-	_	-	_	-						
3506-1 Class 70 Stainless	3506-1 Class A4-		(kN)					(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)
16-1 Stai	70 Stainless	V _{sa}	lb	-	-	-	-	kN	15.5	24.5	35.5	66.0	103.0
O 350 4-70 :	bolt/cap screw		(kN)	-	-	-	-	(lb)	(3,456)	(5,476)	(7,960)	(14,824)	(23,133)
SO A4-	Nominal steel strength –	N _{sa}	lb	-	-	-	-	kN	36.0	75.5	118.5	179.5	166.5
<u> </u>	HIS-RN insert	i Nsa	(kN)	-	-	-	-	(lb)	(8,099)	(16,991)	(26,612)	(40,300)	(37,394)
Redu shea	ction for seismic	$\alpha_{V,seis}$	-		0.	94		-			0.94		
Stren	Strength reduction factor		-	0.65				-	0.65				
	gth reduction factor	φ	-	0.60				-			0.60		

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.


For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi


¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq (17.4.1.2) or Eq (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod.

²For use with the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. Values correspond to a brittle steel element for the HIS insert.

³For the calculation of the design steel strength in tension and shear for the bolt or screw, the *\phi* factor for ductile steel failure according to ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, can be used.

Fractional and Metric HIS-N and HIS-RN Internal Threaded Insert

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 27—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

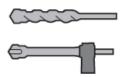
DESIGN INFORMATION	Symbol	Units	Nomina		o Screw D actional	liameter	Units	No		t/Cap Scr nm) Metr	rew Diame ic	eter
INFORMATION			³ / ₈	¹ / ₂	⁵ /8	³ /4		8	10	12	16	20
Effectiveness factor for	k	in-lb		1	7		SI			7.1		
cracked concrete	k _{c,cr}	(SI)		(7	.1)		(in-lb)			(17)		
Effectiveness factor for	k	in-lb		2	4		SI			10		
uncracked concrete	k _{c,uncr}	(SI)		(1	0)		(in-lb)			(24)		
Effective embedment	h	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈	mm	90	110	125	170	205
depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
Min. anchor spacing ³	S _{min}	in.	31/4	4	5	5 ¹ / ₂	mm	63	83	102	127	140
Min. anchor spacing		(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)
Min odro distance ³		in.	3 ¹ / ₄	4	5	5 ¹ / ₂	mm	63	83	102	127	140
Min. edge distance ³	C _{min}	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)
Minimum concrete	h	in.	5.9	6.7	9.1	10.6	mm	120	150	170	230	270
thickness	h _{min}	(mm)	(150)	(170)	(230)	(270)	(in.)	(4.7)	(5.9)	(6.7)	(9.1)	(10.6)
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-	See S	ection 4.1	.10 of this	report	-	See Section 4.1.10 of this report				
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-		0.	65		-			0.65		
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-		0.	70		-			0.70		

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 9A, Manufacturers Printed Installation Instructions (MPII).

²Values provided for post-installed anchors installed under Condition B without supplementary reinforcement as defined in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable.


³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

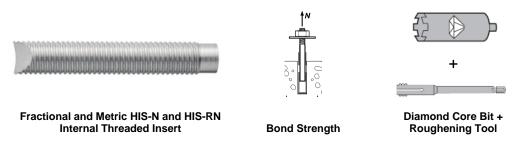
Fractional and Metric HIS-N and HIS-RN

Internal Threaded Insert

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 28—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

DESIG		RMATION	Symbol	Units	Nomin	al bolt/ca (ii	o screw di n.)	ameter	Units	Nor	ninal bolt/o	cap screw	diameter (r	nm)
DESIG		RMATION	Symbol	Units	³ /8	1/2	⁵ /8	3/4	Units	8	10	12	16	20
Embed	ment		h _{ef}	in. (mm)	4 ³ / ₈ (110)	5 (125)	6 ³ / ₄ (170)	8 ¹ / ₈ (205)	mm (in.)	90 (3.5)	110 (4.3)	125 (4.9)	170 (6.7)	205 (8.1)
	re range	Characteristic bond strength in cracked concrete	Tk,cr	psi (MPa)	1,070 (7.4)	1,070 (7.4)	1,070 (7.4)	1,070 (7.4)	MPa (psi)	7.4 (1,070)	7.4 (1,070)	7.4 (1,070)	7.4 (1,070)	7.4 (1,070)
y concrete and saturated concrete	Temperature range A ²	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (MPa)	1,790 (12.3)	1,790 (12.3)	1,790 (12.3)	1,790 (12.3)	MPa (psi)	12.3 (1,790)	12.3 (1,790)	12.3 (1,790)	12.3 (1,790)	12.3 (1,790)
Dry concrete and er saturated conc		Characteristic bond strength in cracked concrete	Tk,cr	psi (MPa)	740 (5.1)	740 (5.1)	740 (5.1)	740 (5.1)	MPa (psi)	5.1 (740)	5.1 (740)	5.1 (740)	5.1 (740)	5.1 (740)
Dı Water	Characteristic bond strength in uncracked concrete		T _{k,uncr}	psi (MPa)	1,240 (8.5)	1,240 (8.5)	1,240 (8.5)	1,240 (8.5)	MPa (psi)	8.5 (1,240)	8.5 (1,240)	8.5 (1,240)	8.5 (1,240)	8.5 (1,240)
		or Category	-	-	1	1	1	1	-	1	1	1	1	1
		gth Reduction factor Characteristic bond strength in cracked concrete	φd, φws T _{k,cr}	- psi (MPa)	0.65 800 (5.5)	0.65 810 (5.6)	0.65 820 (5.7)	0.65 820 (5.7)	- MPa (psi)	0.65 5.5 (790)	0.65 5.5 (800)	0.65 5.6 (810)	0.65 5.7 (820)	0.65 5.7 (820)
hole	Temperature range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	psi (MPa)	1,340 (9.2)	1,350 (9.3)	1,370 (9.5)	1,380 (9.5)	MPa (psi)	9.1 (1,330)	9.2 (1,340)	9.3 (1,350)	9.5 (1,370)	9.5 (1,380)
Water-filled hole	Temperature range B ²	Characteristic bond strength in cracked concrete	Tk,cr	psi (MPa)	550 (3.8)	560 (3.8)	570 (3.9)	570 (3.9)	MPa (psi)	3.8 (550)	3.8 (550)	3.8 (560)	3.9 (570)	3.9 (570)
N		Characteristic bond strength in uncracked concrete	Tk,uncr	psi (MPa)	920 (6.4)	930 (6.4)	950 (6.5)	950 (6.6)	MPa (psi)	6.3 (920)	6.4 (920)	6.4 (930)	6.5 (950)	6.6 (950)
		or Category	-	-	3	3	3	3	-	3	3	3	3	3
		gth Reduction factor Characteristic bond strength in cracked concrete	φ _{wf} Tk,cr	- psi (MPa)	0.45 710 (4.9)	0.45 720 (5.0)	0.45 750 (5.1)	0.45 750 (5.2)	- MPa (psi)	0.45 4.8 (700)	0.45 4.9 (710)	0.45 5.0 (720)	0.45 5.1 (750)	0.45 5.2 (750)
oncrete	Temperature range A ²	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (MPa)	1,190 (8.2)	1,210 (8.4)	1,250 (8.6)	1,260 (8.7)	MPa (psi)	8.0 (1,160)	8.2 (1,190)	8.4 (1,210)	8.6 (1,250)	8.7 (1,260)
Submerged concrete	Temperature range B ²	Characteristic bond strength in cracked concrete	Tk,cr	psi (MPa)	490 (3.4)	500 (3.4)	510 (3.5)	520 (3.6)	MPa (psi)	3.3 (480)	3.4 (490)	3.4 (500)	3.5 (510)	3.6 (520)
Subn		Characteristic bond strength in uncracked concrete	Tk,uncr	psi (MPa)	820 (5.6)	840 (5.8)	860 (5.9)	870 (6.0)	MPa (psi)	5.5 (800)	5.6 (820)	5.8 (840)	5.9 (860)	6.0 (870)
	Anchor Category Strength Reduction factor		- Фиж	-	3 0.45	3 0.45	3 0.45	3 0.45	-	3 0.45	3 0.45	3 0.45	3 0.45	3 0.45
Reduct	Reduction for seismic tension			-	1	1	1	1	-	1	1	1	1	1


For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c / 17.2)^{0.45}$] and $(f_c / 2,500)^{0.15}$ for cracked concrete [For SI: $(f_c / 17.2)^{0.15}$]. See Section 4.1.4 of this report for bond strength determination.

²Temperature range A: Maximum short term temperature = $130^{\circ}F$ (55°C), Maximum long term temperature = $110^{\circ}F$ (43°C). Temperature range B: Maximum short term temperature = $176^{\circ}F$ (80°C), Maximum long term temperature = $110^{\circ}F$ (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 29—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESI	GN INFORMATI	ION	Symbol	Units		al bolt/cap iameter (in		Units		al bolt/cap ameter (mr	
					¹ / ₂	⁵ /8	³ / ₄		12	16	20
Embo	edment	hef	in.	5	6¾	8 ¹ / ₈	mm	125	170	205	
LIID	eument	Het	(mm)	(125)	(170)	(205)	(in.)	(4.9)	(6.7)	(8.1)	
p			psi	750	750	750	MPa	5.2	5.2	5.2	
urate	Temperature	Tk,cr	(MPa)	(5.2)	(5.2)	(5.2)	(psi)	(750)	(750)	(750)	
	range A ² Characteristic bond		_	psi	1,790	1,790	1,790	MPa	12.3	12.3	12.3
ater	้อ strength in		Tk,uncr	(MPa)	(12.3)	(12.3)	(12.3)	(psi)	(1,790)	(1,790)	(1,790)
N Scret	S D Characteristic bond			psi	515	515	515	MPa	3.6	3.6	3.6
	Temperature	strength in cracked concrete	Tk,cr	(MPa)	(3.6)	(3.6)	(3.6)	(psi)	(515)	(515)	(515)
crete	range B ²	Characteristic bond	_	psi	1,240	1,240	1,240	MPa	8.5	8.5	8.5
conc	range B ² Characteristic bond strength in uncracked concrete		$\tau_{k,uncr}$	(MPa)	(8.5)	(8.5)	(8.5)	(psi)	(1,240)	(1,240)	(1,240)
Dry			-	-	1	1	1	-	1	1	1
С	Strength Reduction factor		$\phi_{d,\phi_{WS}}$	-	0.65	0.65	0.65	-	0.65	0.65	0.65
Redu	ction for seismic	αN, seis	-	1	1	1	-	1	1	1	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength in the range 2,500 psi ≤ fc ≤ 8,000 psi [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Bond Strength

Diamond Core Bit

TABLE 30—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT¹

DESIC		N	Symbol	Units	No	minal bo diame	lt/cap scr ter (in.)	rew	Units	Nominal bolt/cap screw diameter (mm)				
					3/8	1/ ₂	5/ ₈	³ /4		8	10	12	16	20
Embe	Embedment		h _{ef}	in. (mm)	4 ³ / ₈ (110)	5 (125)	6 ³ / ₄ (170)	8 ¹ / ₈ (205)	mm (in.)	90 (3.5)	110 (4.3)	125 (4.9)	170 (6.7)	205 (8.1)
and Water Concrete	Temperature range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	psi (MPa)	1,200 (8.3)	1,200 (8.3)	1,200 (8.3)	1,200 (8.3)	MPa (psi)	8.3 (1,200)	8.3 (1,200)	8.3 (1,200)	8.3 (1,200)	8.3 (1,200)
ry concrete and Saturated Conc	Temperature range B ²	Characteristic bond strength in uncracked concrete	Tk,uncr	psi (MPa)	830 (5.7)	830 (5.7)	830 (5.7)	830 (5.7)	MPa (psi)	5.7 (830)	5.7 (830)	5.7 (830)	5.7 (830)	5.7 (830)
У с Sat	Anchor Category		-	-	3	3	3	3	-	2	3	3	3	3
ā	Strength Reduction factor		$\phi_{d,} \phi_{ws}$	-	0.45	0.45	0.45	0.45	-	0.55	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section ⁵.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.25}$ for uncracked concrete [For SI: $(f_c/17.2)^{0.25}$]. See Section 4.1.4 of this report for bond strength determination. ²Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 176°F (80°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 31—DEVELOPMENT LENGTH FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR CORE DRILLED WITH A DIAMOND CORE BIT OR A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL ^{1,2,4,5,6}

		Criteria Section of		Bar Size								
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	#3	#4	#5	#6	#7	#8	#9	#10	
Nominal reinforcing bar	d _b	ASTM A615/A706	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250	
diameter	U _b	ASTNI A013/A700	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)	
			in²	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27	
Nominal bar area	Ab	ASTM A615/A706	(mm²)	(71.3)	(126.7)	(197.9)	(285.0)	(387.9)	(506.7)	(644.7)	(817.3)	
Development length for $f_y = 60$ ksi and $f'_c = 2,500$ psi (normal weight concrete) ³	l _d	ACI 318 12.2.3	in.	12.0	14.4	18.0	21.6	31.5	36.0	40.5	45.0	
, , , , , , , , , , , , , , , , , , ,			(mm)	(304.8)	(365.8)	(457.2)	(548.6)	(800.1)	(914.4)	(1028.7)	(1143.0)	
Development length for $f_y = 60$ ksi and $f'_c = 4,000$ psi (normal	ld	ACI 318 12.2.3	in.	12.0	12.0	14.2	17.1	24.9	28.5	32.0	35.6	
weight concrete) ³			(mm)	(304.8)	(304.8)	(361.4)	(433.7)	(632.5)	(722.9)	(812.8)	(904.2)	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable, and section 4.2.4 of this report. ³For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit $\lambda > 0.75$.

 $4\left(\frac{c_b+K_{tr}}{d_b}\right) = 2.5, \ \psi_i=1.0, \ \psi_e=1.0, \ \psi_s=0.8 \ \text{for } d_b \le \#6, 1.0 \ \text{for } d_b > \#6$

⁵Minimum f_c of 24 MPa is required under ADIBC Appendix L, Section 5.1.1.

⁶Calculations may be performed for other steel grades per ACI 318-11 Chapter 12 or ACI 318-14 Chapter 25.

TABLE 32—DEVELOPMENT LENGTH FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR CORE DRILLED WITH A DIAMOND CORE BIT OR A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL^{1,2,4,5,6}

		Criteria Section of				Bar	Size		
DESIGN INFORMATION	Symbol	Reference Standard	Units	10	12	16	20	25	32
Nominal reinforcing bar	d _b	BS4449: 2005	mm	10	12	16	20	25	32
diameter	Цb	B34449. 2005	(in.)	(0.394)	(0.472)	(0.630)	(0.787)	(0.984)	(1.260)
Nominal bar area	Ab	BS 4440: 2005	mm ²	78.5	113.1	201.1	314.2	490.9	804.2
Nominal bar area	Ab	BS 4449: 2005	(in ²)	(0.12)	(0.18)	(0.31)	(0.49)	(0.76)	(1.25)
Development length for $f_y = 72.5$ ksi and $f'_c =$	let.		mm	348	417	556	871	1087	1392
2,500 psi (normal weight concrete) ³	la	ACI 318 12.2.3	(in.)	(13.7)	(16.4)	(21.9)	(34.3)	(42.8)	(54.8)
Development length for $f_y = 72.5$ ksi and $f'_c =$	ld	ACI 318 12.2.3	mm	305	330	439	688	859	1100
4,000 psi (normal weight concrete) ³	Id	AGI 310 12.2.3	(in.)	(12.0)	(13.0)	(17.3)	(27.1)	(33.8)	(43.3)

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and section 4.2.4 of this report.

³For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit λ > 0.75.

⁴ $\left(\frac{c_b+K_{tr}}{d_b}\right)$ = 2.5, ψ_t=1.0, ψ_s=0.8 for d_b < 20 mm,1.0 for d_b ≥ 20 mm

⁵Minimum f'_c of 24 MPa is required under ADIBC Appendix L, Section 5.1.1.

⁶Calculations may be performed for other steel grades per ACI 318-11 Chapter 12 or ACI 318-14 Chapter 25.

TABLE 33—DEVELOPMENT LENGTH FOR CANADIAN REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR CORE DRILLED WITH A DIAMOND CORE BIT OR A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL ^{1,2,4,5,6}

		Criteria Section of				Bar Size		
DESIGN INFORMATION	Symbol	Reference Standard	Units	10M	15M	20M	25M	30M
Nominal reinforcing bar	d _b	CAN/CSA-G30.18 Gr.400	mm	11.3	16.0	19.5	25.2	29.9
diameter	Ub	CAN/CSA-G30.18 G1.400	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)
Neminal has area	4	CAN/CSA-G30.18 Gr.400	mm ²	100.3	201.1	298.6	498.8	702.2
Nominal bar area	A _b	CAN/CSA-G30.18 GI.400	(in ²)	(0.16)	(0.31)	(0.46)	(0.77)	(1.09)
Development length for $f_v = 58$ ksi and $f_c = 2,500$ psi	la	ACI 318 12.2.3	mm	315	445	678	876	1,041
(normal weight concrete) ³	Id	AGI 310 12.2.3	(in.)	(12.4)	(17.5)	(26.7)	(34.5)	(41.0)
Development length for $f_v = 58$ ksi and $f'_c = 4,000$ psi	la	ACI 318 12.2.3	mm	305	353	536	693	823
(normal weight concrete) ³	Id	A01010 12.2.0	(in.)	(12.0)	(13.9)	(21.1)	(27.3)	(32.4)

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

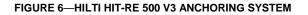
²Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and section 4.2.4 of this report.

³For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d), as applicable, are met to permit λ > 0.75.

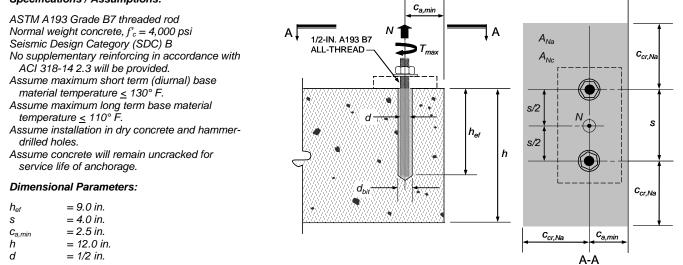
 ${}^{4}\left(\frac{c_{b}+K_{tr}}{d_{b}}\right) = 2.5, \ \psi_{i} = 1.0, \ \psi_{e} = 1.0, \ \psi_{s} = 0.8 \ for \ d_{b} < 20M, 1.0 \ for \ d_{b} \ge 20M$

⁵Minimum f'_c of 24 MPa is required under ADIBC Appendix L, Section 5.1.1.

⁶Calculations may be performed for other steel grades per ACI 318-11 Chapter 12 or ACI 318-14 Chapter 25.



HILTI HIT-RE 500 V3 FOIL PACK AND MIXING NOZZLE


ANCHORING ELEMENTS

HILTI TE-YRT ROUGHENING TOOL

Specifications / Assumptions:

Calculation for the 2018 and 2015 IBC in accordance with ACI 318-14 Chapter 17 and this report	ACI 318-14 Code Ref.	Report Ref.
Step 1 . Check minimum edge distance, anchor spacing and member thickness: $c_{min} = 2.5 \text{ in.} \leq c_{a,min} = 2.5 \text{ in.} \therefore OK$ $s_{min} = 2.5 \text{ in.} \leq s = 4.0 \text{ in.} \therefore OK$ $h_{min} = h_{ef} + 1.25 \text{ in.} = 9.0 + 1.25 = 10.25 \text{ in.} \leq h = 12.0 \therefore OK$ $h_{ef,min} \leq h_{ef} \leq h_{ef,max} = 2.75 \text{ in.} \leq 9 \text{ in.} \leq 10 \text{ in.} \therefore OK$	-	Table 7
Step 2. Check steel strength in tension:		
Single Anchor: $N_{sa} = A_{se} \bullet f_{uta} = 0.1419 \text{ in}^2 \bullet 125,000 \text{ psi} = 17,738 \text{ lb.}$ Anchor Group: $\phi N_{sa} = \phi \bullet n \bullet A_{se} \bullet f_{uta} = 0.75 \bullet 2 \bullet 17,738 \text{ lb.} = 26,606 \text{ lb.}$ Or using Table 11: $\phi N_{sa} = 0.75 \bullet 2 \bullet 17,735 \text{ lb.} = 26,603 \text{ lb.}$	17.4.1.2 Eq. (17.4.1.2)	Table 2 Table 6A
Step 3 . Check concrete breakout strength in tension: $N_{cbg} = \frac{A_{Nc}}{A_{Nc0}} \cdot \psi_{ec,N} \cdot \psi_{ed,N} \cdot \psi_{c,N} \cdot N_{b}$	17.4.2.1 Eq. (17.4.2.1b)	-
$A_{Nc} = (3 \bullet h_{ef} + s)(1.5 \bullet h_{ef} + c_{a,min}) = (3 \bullet 9 + 4)(13.5 + 2.5) = 496 in^2$	-	-
$A_{Nc0} = 9 \bullet h_{ef}^2 = 729 \ in^2$	17.4.2.1 and Eq. (17.4.2.1c)	-
$\psi_{ec,N} = 1.0$ no eccentricity of tension load with respect to tension-loaded anchors	17.4.2.4	-
For $c_{a,min} < 1.5h_{ef}$ $\psi_{ed,N} = 0.7 + 0.3 \cdot \frac{c_{a,min}}{1.5h_{ef}} = 0.7 + 0.3 \cdot \frac{2.5}{1.5 \cdot 9} = 0.76$	17.4.2.5 and Eq. (17.4.2.5b)	-
$\psi_{c,N} = 1.0$ uncracked concrete assumed ($k_{c,uncr} = 24$)	17.4.2.6	Table 7
Determine c_{ac} : From Table 11: $\tau_{uncr} = 2,300 \text{ psi}$ $\tau_{uncr} = \frac{k_{c,uncr}}{\pi \cdot d} \sqrt{h_{ef} \cdot f'_c} = \frac{24}{\pi \cdot 0.5} \sqrt{9.0 \cdot 4,000} = 2,899 \text{ psi} > 2,300 \text{ psi} \therefore \text{ use } 2,300 \text{ psi}$ psi $c_{ac} = h_{ef} * \left(\frac{\tau_{uncr}}{1,160}\right)^{0.4} \left[3.1 - 0.7\frac{h}{h_{ef}}\right] = 9 * \left(\frac{2,300\left(\frac{4,000}{2,500}\right)^{25}}{1,160}\right)^{0.4} \left[3.1 - 0.7\frac{12}{9}\right] = 26.9 \text{ in.}$	-	Section 4.1.1 Table 11
For $c_{a,min} < c_{ac} \Psi_{cp,N} = \frac{\max c_{a,min}; 1.5 h_{ef} }{c_{ac}} = \frac{\max 2.5; 1.5*9 }{26.9} = 0.50$	17.4.2.7 and Eq. (17.4.2.7b)	-
$N_b = k_{c,uncr} \cdot \lambda \cdot \sqrt{f'_c} \cdot h_{ef}^{1.5} = 24 \cdot 1.0 \cdot \sqrt{4,000} \cdot 9^{1.5} = 40,983 \text{ lb.}$	17.4.2.2 and Eq. (17.4.2.2a)	Table 7
$N_{cbg} = \frac{496}{729} * 1.0 * 0.76 * 0.50 * 40,983 = 10,596$ lb.	-	-
$\phi N_{cbg} = 0.65 \bullet 10,596 = 6,887 lb.$	17.3.3(c)	Table 7

FIGURE 7—SAMPLE CALCULATION

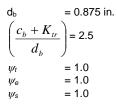
	tep 4 . Check bond strength in tension: $N_{ag} = \frac{A_{Na}}{A_{Na0}} \cdot \psi_{ec,Na} \cdot \psi_{ed,Na} \cdot \psi_{cp,Na} \cdot N_{ba}$				
$A_{Na} = (2c_{Na} + s)(c_{Na} + c_{a,min})$ $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1,100}} = 10 * 0.5$ $A_{Na} = (2 * 7.67 + 4)(7.67 + 2.5)$	17.4.5.1 Eq. (17.4.5.1d)	Table 11			
$A_{Na0} = (2c_{Na})^2 = (2 \cdot 7.67)^2 = 2$	$A_{Na0} = (2c_{Na})^2 = (2 \bullet 7.67)^2 = 235.3 in^2$				
$\psi_{ec,Na} = 1.0$ no eccentricity – I	$\psi_{ec,Na} = 1.0$ no eccentricity – loading is concentric			-	
$\Psi_{ed,Na} = \left(0.7 + 0.3 \frac{c_{a,min}}{c_{na}}\right) =$	$\Psi_{ed,Na} = \left(0.7 + 0.3 \frac{c_{a,min}}{c_{na}}\right) = \left(0.7 + 0.3 \frac{2.5}{7.67}\right) = 0.80$			-	
$\Psi_{cp,Na} = \frac{max c_{a,min};c_{na} }{c_{ac}} = \frac{max}{c_{ac}}$	$\Psi_{cp,Na} = \frac{max c_{a,min};c_{na} }{c_{ac}} = \frac{max 2.5;7.67 }{26.9} = 0.29$			-	
$N_{ba} = \lambda \bullet \tau_{uncr} \bullet \pi \bullet d \bullet h_{ef} = 1.0$	$N_{ba} = \lambda \bullet \tau_{uncr} \bullet \pi \bullet d \bullet h_{ef} = 1.0 \bullet 2,300 \bullet \left(\frac{4,000}{2,500}\right)^{0.25} \bullet \pi \bullet 0.5 \bullet 9.0 = 36,570 \text{ lb.}$			Table 11	
$N_{ag} = \frac{196.7}{235.3} * 1.0 * .80 * .29 * 36$	$N_{ag} = \frac{196.7}{235.3} * 1.0 * .80 * .29 * 36,570 = 7,092/b.$			-	
$\phi N_{ag} = 0.65 \bullet 6,256 = 4,610$ lb.			17.3.3(c)	Table 11	
Step 5. Determine controlling stre	ength:				
Steel Strength	$\phi N_{sa} =$	= 26,603 lb.			
Concrete Breakout Strength	$\phi N_{cbg} =$	6,887 lb.			
Bond Strength	$\phi N_{ag} =$	4,610 lb. CONTROLS			

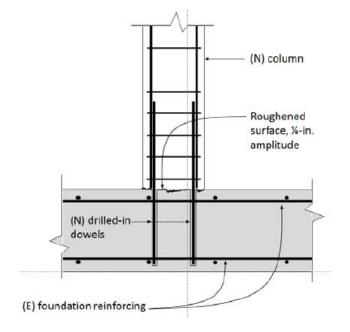
FIGURE 7—SAMPLE CALCULATION (Continued)

Specifications / Assumptions:

Development length for column starter bars

Existing construction (E):


Foundation grade beam 24 wide x 36-in deep., 4 ksi normal weight concrete, ASTM A615 Gr. 60 reinforcement


New construction (N):

18 x 18-in. column as shown, centered on 24-in wide grade beam, 4 ksi normal weight concrete, ASTM A615 Gr. 60 reinforcement, 4 - #7 column bars

The column must resist moment and shear arising from wind loading.

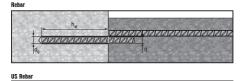
Dimensional Parameters:

Calculation for the 2018 and 2015 IBC in accordance with ACI 318-14 Chapter 17 and this report	ACI 318-14 Code Ref
$l_{d} = \left[\frac{3}{40} \cdot \frac{f_{y}}{\lambda \cdot \sqrt{f'_{c}}} \cdot \frac{\psi_{t}\psi_{e}\psi_{s}}{\frac{c_{b} + K_{tr}}{d_{b}}}\right] \cdot d_{b} = \left[\frac{3}{40} \cdot \frac{60000}{1.0 \cdot \sqrt{4000}} \cdot \frac{(1.0)(1.0)(1.0)}{2.5}\right] \cdot 0.875 = 25in.$ Note that the confinement term K _{tr} is taken equal to the maximum value 2.5 given the edge distance and confinement condition	Eq. (25.4.2.3a)
tep 2 Detailing (not to scale)	-

FIGURE 8—SAMPLE CALCULATION (POST-INSTALLED REINFORCING BARS)

The second		A B)	Ins Mo Ins	Iti HIT-RE 50 tructions for use trucciones de uso de d'emploi truções de utiliza;	en es fr
8	Causes severe skin May cause respirato May cause an allergi	burns and eve damage.(E	8)		
10 11 12		³ /4" 1 ³ /8" 1835 mm ³ /4" 1 ⁹ /8" 1835 mm	3 1/8" 10" 80250 mm 3 1/8" 25" 80635 mm		 ◆ 84.35 ◆ 86.37 ◆ 83.39
13 14 15		7/16" 1 3/4" 1040 mm 7/16" 1 3/4" 1040 mm	2 ³ %"10" 60250 mm 2 ³ %"25" 60640 mm		 ▶ 22 23 ▶ 24 25 ▶ 44 41
HIT-V (-RFHCR) / HAS-E (-87) / HAS-R					
62222B	7/16 2 % 9/16 2 % 3/4 3 ½ 7/8 3 ½ 1 3 ½ 1 1/8 4	[inch] [a 7 ½ 4 10 a 12 ½ 2 15 2 17 ½ 4 20	inch] [ft] 7/16 9/16 11/16 11 13/16 1 15/16 1 1 1/8 1	Ib] [t] 15 30 60 1 25 1 50 2	Mm) 20 41 136 169 203 271

	200 0 00 0		h _{er}		📀
1		⁷ ⁄ ₁₆ " 1 ³ ⁄4" 1040 mm	2 ³ %"10" 60250 mm		▶ 16 17
2		⁷ /16" 1 ³ /4"	2 ³ %"75"		▶ 18 19
3		1040 mm	601920 mm		► 2021
4		⁷ / ₁₆ " 1 ³ /4" 1040 mm	2 ³ %"10" 60250 mm		▶ 2223
5	U	⁷ ⁄ ₁₆ " 1 ³ ⁄4" 1040 mm	2 3%"75" 601920mm		▶ 24 25
6		^{7/} 16" 1 ³ ⁄4" 1040 mm	2 ³ ⁄8"25" 60640 mm		◆ 26 27
7		^{9/} 16"1 ¹ /8" 1432mm	2 ³ ⁄8"10" 60250 mm	8 (222)	▶ 28 29


				80 00 80 00
en	Dry concrete	Water saturated concrete	Waterfilled borehole in concrete	Submerged borehole in concrete
	00- X	איר מרוי ממשיעונים	CHA	
en	Threaded rod Threaded sleeve	Rebar	Uncracked concrete	Cracked concrete
	C	\$ }	ŧ	
ən	Hammer drilling	Diamond coring	Hollow drill bit	Roughening tool
	Ö _{luok}	U loure, ini	U toure, ful	Ö _{koughen}
ØN	Working time	Initial curing time	Curing time	Roughening time

	her hs dr							
Ød (inch)	Ød₀ [inch]	h _{er} [inch]	Ø [ind		h₅ [inch		T _{max} [ft-lb]	T _{max} [Nm]
3/8	11/16	4 ³ /8	7/	_	3/815		15	20
1/2	7/8	5	9/		1/213		30	41
5/8	1 1/8	6 ³ /4	11	/16	5/81	1/2	60	81
3/4	1 ¹ /4	8 ¹ /8	13	/16	3/41	7/8	100	136
-	~ .		_		~ .	_		-
Distantiation	Ød ₀	h _{el}			ð d _í		hs ſmm1	T _{max} [Nm]
Ø d [mm]	[mm]	[mn	-	U	nm]		[mm] 820	
M8 M10	14	90			9 12		820	10 20
M10	22	125			12		1025	40
M12	28	170	-		18		1230	80
								50

HIT-V

nii-v				
825223	Ø d _o	h _{ef}	Ø d _f	T _{max}
Ø d [mm]	[mm]	[mm]	[mm]	[Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	100480	26	200
M27	30	110540	30	270
M30	35	120600	33	300

1 inch = 25,4 mm

THAT AND A STATE	Ø d₀	h _{er}
d	[inch]	[inch]
#3	1/2	23/8221/2
#4	5/8	2 3/430
#5	3/4	3 1/837 1/2
#6	7/8	3 1/215
=0	1	1545
#7	1	31/2171/2
= /	1 1/8	17 1/252 1/2
#8	1 1/8	420
#0	1 1/4	2060
#9	1 3/8	4 1/267 1/2
#10	1 1/2	575
# 11	1 3/4	5 1/282 1/2

CA Rebar

	20202020202	Ø d _o	
	d	[inch]	[mm]
I	10 M	9/16	70678
l	15 M	3/4	80960
l	20 M	1	901170
l	25 M	1 1/4 (32 mm)	1011512
l	30 M	1 1/2	1201794
7			4.1

1 inch = 25,4 mm

ļ	HAS	HIS-N	Rebar	HIT-RB	HIT-SZ	HIT-DL	TE-YRT
d ₀ (inch)		d [inch]		[inch]	[inch]	[inch]	[inch]
7/16	3/8	-	-	7/16	-	-	
1/2	-	-	#3	1/2	1/2	1/2	
9/16	1/2	-	10M	\$/16	9/48	9/16	
5/6	-	-	#4	5/8	5/8	9/16	
11/56	-	3/8	-	11/16	11/16	11/16	
34	5/8	-	15M #5	3/4	3/4	3/4	34
7/6	3/4	1/2	#6	7/8	7/8	7/8	7/8
1	7/6	-	20M #6 #7	1	1	1	1
116	1	5/8	#7 #8	1%	1 1/6	1	1 1/6
11/4	-	3/4	25M #8	11/4	11/4	1	
136	1 1/4	-	#9	13%	136	136	13/8
1 1/2	-	-	30M #10	1 1/2	1 1/2	136	
134	-	-	#11	1¾	13/4	136	

ніт-DL: h_{et} > 10" ніт-яв: h_{et} > 20 x d

68			907070707070	
		🕒 t _{eok}	tore, ini	U t _{cure, M}
 23	-5	2 h	48 h	168 h
32	0	2 h	24 h	36 h
40	4	2 h	16 h	24 h
50	10	1.5 h	12 h	16 h
60	16	1 h	8 h	16 h
72	22	25 min	4 h	6.5 h
85	29	15 min	2.5 h	5 h
95	35	12 min	2 h	4.5 h
105	41	10 min	2 h	4 h

E ≥ +5 °C / 41 °F

= 2x t_{cure}

0

h _e , (inch)	h _" , [mm]	🔶 t _{roughen}
0 4	0 100	10 sec
4.018	101 200	20 sec
8.0112	201 300	30 sec
12.01 16	301 400	40 sec
16.01 20	401 500	50 sec
t _{roughen} = h _{ef} [inch] * 2.5	t _{roughen} = h _{ef} [mm] / 10	

Rebar

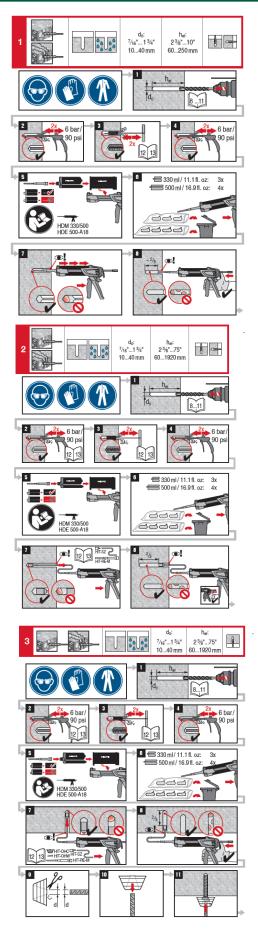
h _{et}	Alle Alexander Alexander
1 5000000000000000000000000000000000000	ANTANA ANTANANA ANTANA ANTANA ANTANA
do	d

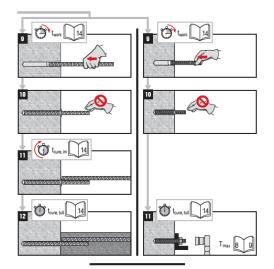
EU Rebar

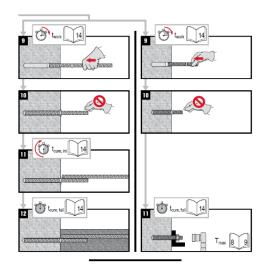
مممممو Ø d [mm]	Ø d₀ [mm]	h _{er} (mm)
8	12	60480
10	14	60600
12	16	70720
14	18	75840
16	20	80960
18	22	851080
20	25	901200
22	28	951320
24	32	961440
25	32	1001500
26	35	1041560
28	35	1121680
30	37	1201800
32	40	1281920

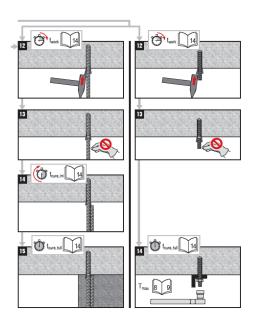
	HIT-V	HIS-N	Rebar	HIT-RB	HIT-SZ	HIT-DL	TE-YRT
d₀ [mm]		d [mm]		[mm]	[mm]		[mm]
10	8	-	-	10	-	-	
12	10	-	8	12	12	12	
14	12	8	10	14	14	14	
16	-	-	12	16	16	16	
18	16	10	14	18	18	18	18
20	-	-	16	20	20	20	20
22	20	12	18	22	22	20	22
25	-	-	20	25	25	25	25
28	24	16	22	28	28	25	28
30	27	-	-	30	30	25	30
32	-	20	24/25	32	32	32	32
35	30	-	26/28	35	35	32	35
37	-	-	30	37	37	32	
40	-	-	32	40	40	32	
нт-ю.: h _{el} > 250 mm нт-яв: h _{el} > 20 x d							

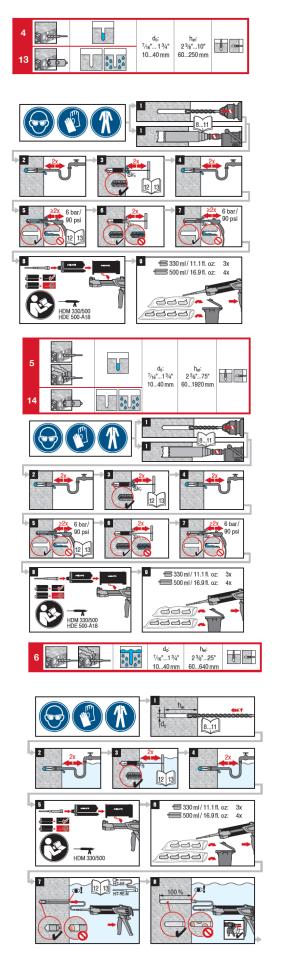
HIT-OHW 1 Art. No Hilti VC HDM 330 / 500 HDE 500-A18 337111 387550 her N Ο d₀ [mm] 10...32 35...40 Art. No. 381215 im] ..1500 ≥ 6 bar/90 ps

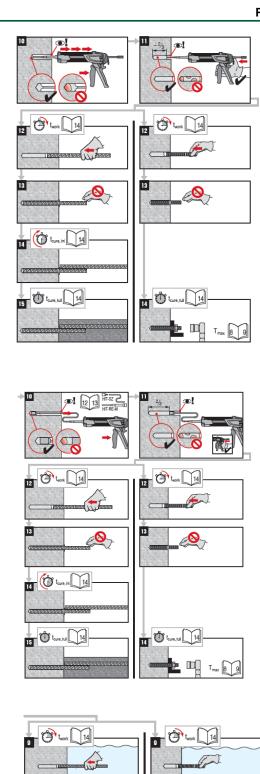

	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
\$ D		


	122222222	h _{er}		
HDM, HDE, HIT-P 8000D	≤ US #5	12 1/2 37 1/2 [inch]	00.05 404.05	41 °F 104 °F 5 °C 40 °C
	≤ EU 16mm	320 960 [mm]		
	≤ CAN 15M	320 960 [mm]	-50400	
HDE, HIT-P 8000D	≤ US #7	17 1/252 1/2 [inch]	02.05 101.05	41 °F 104 °F 5 °C 40 °C
	≤ EU 20mm	400 1200 [mm]		
	≤ CAN 20M	390 1170 [mm]	-5 0 40 0	
HIT-P 8000D	≤ US #10	25 75 [inch]	00.05 404.05	41 °F 104 °F
	≤ EU 32mm	640 1920 [mm]	-5 °C 40 °C	
	≤ CAN 30M	598 1794 [mm]	-50400	50400


<u>.....</u>


	0000000	h _{ef}		
HDM, HDE, HIT-P 8000D	≤ US #5	12 1/2 37 1/2 [inch]	00.05 404.05	41 °F 104 °F 5 °C 40 °C
	≤ EU 16mm	320 960 [mm]		
	≤ CAN 15M	320 960 [mm]	5 0 40 0	
HDE, HIT-P 8000D	≤ US #7	17 ¹ / ₂ 39 ³ / ₈ [inch]	23 °F 104 °F -5 °C 40 °C	
	≤ EU 20mm	400 1000 [mm]		
	≤ CAN 20M	390 1000 [mm]	5 0 40 0	


FIGURE 9A—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)



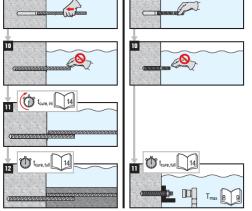
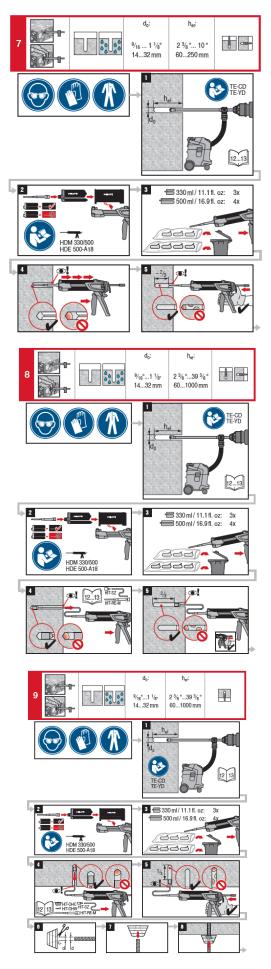
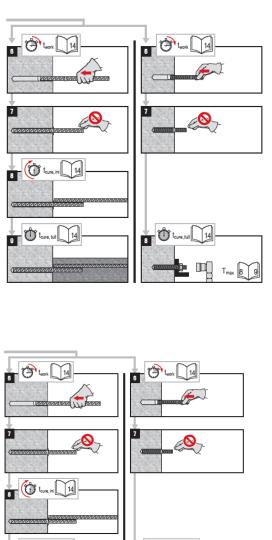
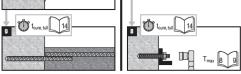
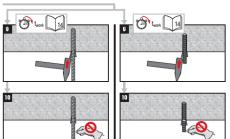






FIGURE 9A—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

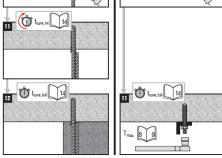
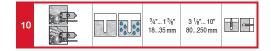
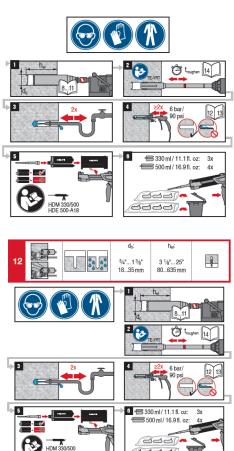




FIGURE 9A—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

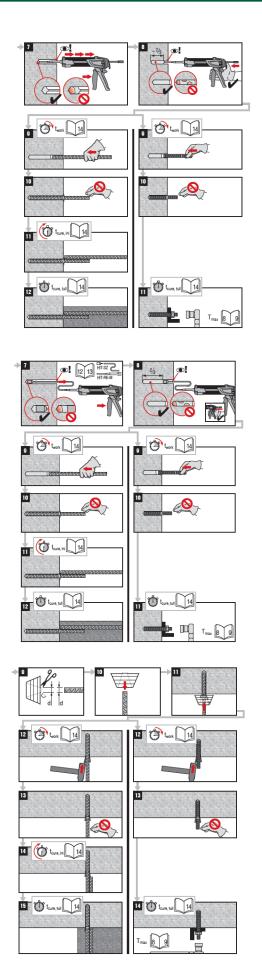
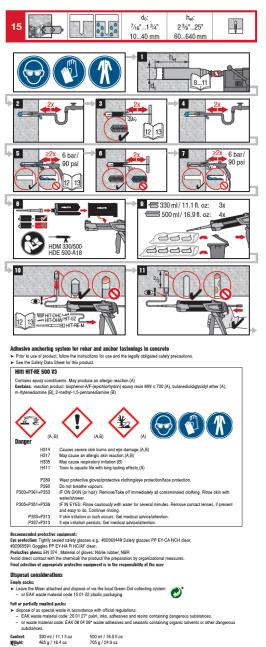
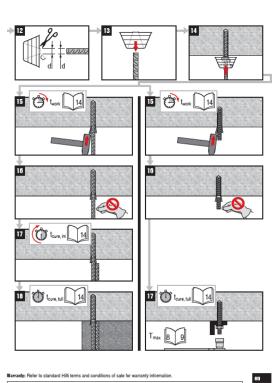




FIGURE 9A—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

V

anty: Refer to standard Hilti terms and conditions of sale for warranty information

Failure to observe these installation instructions, use of non-Hilli anchors, poor or questionable concrete conditions, or unique applications may affect the reliability or performance of the fasterings.

Product Information

- Aways keep this instruction for use together with the product.
 Ensure that the instruction for use is with the product when it is given to other persons.
 Safety Blats Statet: Review the D6 balons use.
 Grack capatified dats: See expiration date imprint on folgoack manifold (month/year). Do not use expired product.
- Called A supervised name: See explanation date implicit on indipate manifold (indiminipati), but not determini-Foll pack (supervised and supervised and s

41 °F lo 77 °F. – For any application not covered by this document/ beyond values specified, please contact Hill. – Partly secd feil packs must be used up within 4 weeks. Leave the mixer attached on the foil pack manifold and store under the recommended storage conditions. If reused, attach a new mixer and discard the initial quantity of anchor under the recomm adhesive.

\land WARNING

- Analysis was table of the second of the seco

- the extension hose).

 Altach area winerprint to dispensing a new loi pack (rang fit).
 Gation Never remove the mixer while the foll pack system is under pressure. Press the release builton of the dispenser to avoid most argitable with the addressing to the source and the system is under pressure. Press the release builton of the dispenser to avoid most argitable with the addressing. I use only the type of mixer aupplied with the addressing to the source and the source area and the source and the source
- A Ensure that bencholes are filled from the back of the bencholes without forming air voids If necessary, use the accessories / extensions to reach the back of the borehole.
- Intercentary, use the accession is reaching to a react the pack of the openion.
 For orehead applications use the openiad accession is in IFC3 (IP and take special care when inserting the faste-ning element. Excess adheaive may be forced out of the borehole. Make sure that no motar drips onto the instaler.
 If a new misser instaled onto a previously-specied foil pack, the first trigger puls must be discarded.
 A new misser must be used for each new foil pack.

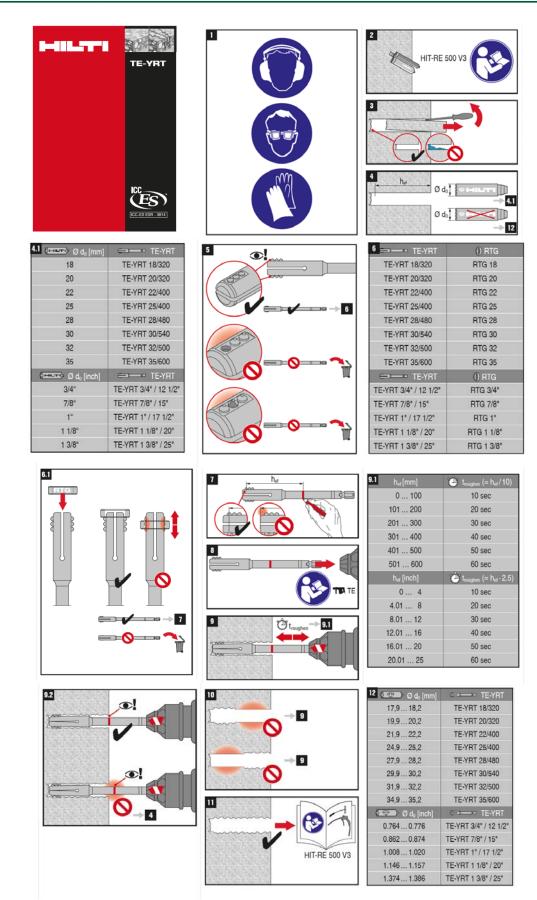


FIGURE 9B—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII)

ICC-ES Evaluation Report

ESR-3814 LABC and LARC Supplement

Reissued January 2019 Revised January 2020 This report is subject to renewal January 2021.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 500 V3 ADHESIVE ANCHORS AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System for cracked and uncracked concrete, described in ICC-ES evaluation report <u>ESR-3814</u>, has also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:

- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System for cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the evaluation report <u>ESR-3814</u>, complies with LABC Chapter 19, and LARC, and is subject to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Hilti HIT RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report ESR-3814.
- The design, installation, conditions of use and labeling of the Hilti HIT-RE 500 V3 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are in accordance with the 2018 International Building Code[®] (2018 IBC) provisions noted in the evaluation report <u>ESR-3814</u>.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the evaluation report and tables are for the connection of the adhesive anchors and post installed reinforcing bars to the concrete. The connection between the adhesive anchors or post installed reinforcing bars and the connected members shall be checked for capacity (which may govern).
- For use in wall anchorage assemblies to flexible diaphragm, anchors shall be designed per the requirements of City of Los Angeles Information Bulletin P/BC 2020-071.

This supplement expires concurrently with the evaluation report, reissued January 2019 and revised January 2020.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

ICC-ES Evaluation Report

ESR-3814 FBC Supplement

Reissued January 2019 Revised January 2020 This report is subject to renewal January 2021.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 500 V3 ADHESIVE ANCHORS AND POST-INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT-RE 500 V3 Adhesive Anchors and Post-Installed Reinforcing Bar System in Concrete, recognized in ICC-ES master evaluation report ESR-3814, has also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2017 Florida Building Code—Building
- 2017 Florida Building Code—Residential

2.0 CONCLUSIONS

The Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System, described in Sections 2.0 through 7.0 of the master evaluation report ESR-3814, comply with the *Florida Building Code—Building* and the *Florida Building Code—Residential*, provided the design and installation are in accordance with the 2015 *International Building Code*[®] provisions noted in the master report.

Use of the Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System with stainless steel threaded rod materials and reinforcing bars, and stainless steel Hilti HIS-RN inserts has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Residential.*

Use of the Hilti HIT-RE 500 V3 Adhesive Anchor System and Post-Installed Reinforcing Bar System with carbon steel threaded rod materials and reinforcing bars and carbon steel Hilti HIS-N inserts for use in dry, interior locations has also been found to be in compliance with the High-velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Residential*.

For products falling under Florida Rule 9N-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued January 2019 and revised January 2020.

